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INTRODUCTION

This report summarises the research carried out during the period

1 December 1980 to 30 November 1984 on Grant AFOSR-81-0003 entitled

'High Angular Resolution Stellar Interferometry’. The AFOSR program

manager was H Radoski and the Principal Investigator was J C Dainty.

The research was carried out at The Institute of Optics, The University

of Rochester, Rochester NY 14627.
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1. SUMMARY OF ACCOMPLISHMENTS

Copies of the 20 papers are provided in the Appendix. 1In this
report we therefore give only a brief outline of the important results

that were obtained in each of the topics investigated.

1.1 Atmospheric Turbulence (Refs 3 and 4)

What exposure time At should be used in stellar speckle
interferometry? The question of the optimum time (for maximum
signal-to-noise ratio) when in the.photon-limited regime was
investigated by 0’Donnell and Dainty [J Opt Soc Am, 70, 1354 (1980)1,
who showed that a good rule of thumb is At  2t,, where t, is the 1/e
coherence time of the stellar image. Measurements of the temporal and
spatio-temporal correlation were made at Mauna Kea, Hawaii over 10
nights in June/July 1980 [3], showing an average correlation time of 15

ms which implies a speckle exposure time of 30 ms.

Measurements were also made of the wavelength dependence of the
variance of stellar scintillation [4] which was shown to follow

Tatarski’'s prediction of ¢21/<I>2 = A~7/6,

In unpublished work, J Dugan [Ms Thesis] constructed an anamorphic
shearing interferometer for measuring the long-exposure MTF of the
atmosphere. This was a prototype instrument which demonstrated the
feasibility of constructing a portable interferometer for site

testing. Even today, astronomers use the naive 'star trail’ method for
site testing which is almost totally irrelevant fors characterising

sites for large optical telescopes.




PP, T TRTWRET T

1.2 Space-Time Structure of Images (Refs 2, 3 and 6)

If one observes the speckle pattern image of an unresolved
star, the time evolution would be qualitatively described as a
'boiling’ of the image. The spatial structure of a speckle pattern at
a given instant of time is quantitatively described by the spatial
correlation function Cy(Ax). The temporal structure at a given
space-point is described by the temporal correlation Cp(At). The
spatjio-temporal structure is described by space-time correlation
function C3(Ax.,At) and we measured this function for stellar speckle

images [Dainty et al, J Opt Soc Am, 71, 490-492 (1981) and ref 3].

If the space—-time correlation is separable,

C3(ax.At) = Cy(Ax) Cy(At),

then the spatial structure and time evolution are uncorrelated and
under these conditions one would describe the overall time evolution as
'boiling’. We showed experimentally [3] and theoretically [2], that
C3(Ax.At) is pot normally separable in stellar speckle images and
therefore there is a coupling between the spatial and temporal
structure of the image. This is due physically to the directionality

of the turbulence in the telescope pupil due to wirnd.

It should be possible to make use of the space-time coupling of the
image intensity to inerease the performance of systems that attempt to
image through turbulence. For example, at the moment, speckle
interferometry uses data from consecutive frames independently and

fails to make use of the fact that photons arrivirg at the end of one
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frame are correlated with those arriving at the start of the following

one.

Reference 6 points out the bias obtained on the shape of the normal ised
spatial correlation function of dynamic speckle under the influence of
time integration. The counter-intuitive result is that the'apeckle

size jincreases slightly with increasing time integration.




o .

1.3 Speckled Speckle (Refs 5§ and 14)

'Speckled speckle’ arises when a speckle pattern is scattered
by a finite rough surface or propagates through a random medium of
finite extent. An example is light that has propagated through the
atmosphere (i.e, a speckle pattern) and is scattered by an object with

a rough surface,

0’Donnell [5] showed that the probability density function of speckled
speckle is a K-distribution of order equal to the number of speckles
illuminating the second scatterer, In the limiting case .of the second
scattering area being small compared to the illuminating speckle size,
the variance of the intensity equals three times the mean value,
whereas for ordinary speckle the variance equals the mean. Newman [14]

experimentally confirmed this.

Anb




1.4 Detection of Gratings Dehind Diffusers (Refs 8 and 10)

This has no direct relevance to stellar imaging but was a
spinoff resulting from asking the question: what phase objects can be

'seen’ behind strong phase diffusers?

Let the correlation length of the wave that has passed through a phase
diffuser be L and the period of a phase grating be b. Then if
L/b<.35, it is impossible to detect the presence of the grating behind
the diffuser from simple observation of the intensity in the near— or

far-field.

However, the presence (and period) of the grating ¢an be detected by
making correlation measurements, either temporal or spatio-temporal
depending upon the circumstances. This was first suggested by Baltes
et al and experimentally demonstrated in Refs 8 and 10, This has
particular application to secure coding of information which can only

be detected by special correlation techniques.




1.5 e_Phase Problem (Refs 1,7,12,17,19,20 and 21)

1.5.1 (Cross—spectrum Method

Given the power spectrum, <F(u) F*(u)>, and the
cross—spectrum, <F(u) F*(u + A)> where A is a small frequency
increment, Knox and Thompson showed that it is possible to recover the
object function f(x) uniquely. This is done by finding phase
differences in the frequency domain and bootstrapping the phase from
the origin outwards. The cross-spectrum method is of course important
in astronomy because <F(u) F*(u + A)> can be measured using speckle

data.

In Ref 1, we showed that it is possible to recover the object function
by a zero location technique. The main significance of this result, as
Brames discussed in his thesis, is that it proved the unigueness of the
cross—spectrum method. Computationally it would be more

straightforward to use the original Knox-Thompson bootstrapping method.

1.5.2 Uniqueness of Modulus-Only Data

(a) Eigenstein’s Criterion

In one dimension it is well-known that f(x) cannot be
recovered uniquely from IF(u) {2, at least in general. In two
dimensions, the number of possible object functions is greatly reduced,
and it is frequently stated that f(x,y) is recovgrable uniquely from
IF(u,v) |2, ralmost always’. Suppose, however, that we wish to

Zuaragtee that there is a unique solution. For what class of objects




[4]

f(x,y) is uniqueness guaranteed?

The uniqueness of the solution is dependent on the factorisability, or

reducability, of the z-transform of the object:

F(z3.23) = Efij z3l 23,

where zy and 25 are complex spatial frequencies and fij represents
sampled values of the object. If the polynomial F(zy,2j3) is
non—factorisable (or irreducible), then there is a unique solution to

the phase problem (i.e. given IFI2, there is a unique f).

Irreducibility of F is guaranteed for certain objects f whose support
satisfies Eisenstein’s criterion’ [7,17], This criterion requires that
the object has non—zero.points in two particular locations. One of
these points is similar to, but not the same as, the reference point in

holography. Details are given in Ref 7.

In his thesis and [21], Brames greatly extends the class of irreducible
objects. The following is an approximate rule-of-thumb. Enclose the
object support by the closest-fitting polygon: if the polygon does pot
have any two sides parallel, any object with that support has a unique

solution to the phase problem.

Test for Uniguenes

Given either the object or autocorrelation values it is possible to
test for factorisability, and hence uniqueness, using a simple

algebraic procedure [12). This procedure uses the following fact: if

g




the polynomial whose coefficients are reduced modulo p, where p is any
prime, is irreducible, then the original polynomial is irreducible. It
is much easier to deal with polynomials whose coefficients are reduced

modulo p is p is small, e.g. p = 2.

1.5.3 Recovering Solutions from Modulus-Only Data

Extending the above ideas, we see that solving the phase

piroblem is ’'simply’ a matter of factorising polynomials in two complex

variables. For discrete, noiseless data this is a straightforward task

[19]. Unfortunately, the technique described in [19] cannot easily be
extended to cases of real interest (e.g. noisy data) and the Fienup
algorithm is probably still the best technique currently available.
Nomlinear least squares optimisation only proved useful up to 5§ x §

objects [2C].

e o



1.6 Infra-red Speckle Interferometry (Ref 16)

An extensive observational program of infra-red speckle
interferometry was carried during the period of this grant in
collaboration with Prof J L Pipher (Rochester) and Dr S T Ridgeway
(Kitt Peak). The bipolar nebular HD44179, the Red Rectangle, was
spatially resolved for the first time [16) and observations on OH26.5,

NML Cyg and IRC+10420 are also being prepared for publication.
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1.7 Phase Conjugation (Refs 13,15 and 18)

Whilst this subject is not connected with stellar speckle
interferometry, it is highly relevant to imaging through turbulent
media because of the possibility of the correction for random
distortion., Nieto-Vesperinas’ work on this relates to Fabry-Perot
interferometers with one phase-conjugate mirror [13,15] and to the

phase conjugation of evanescent waves [18].

vy




1.8 Ribliography on Stellar Interferometry

During the period of this grant a bibliography on stellar
interferometry was maintained and the latest version is attached at the

end of the Appendix.
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REF. 1

JOSA Letters

Method for determining object intensity distributions in
stellar speckle interferometry

B. ]. Srames and |. C. Dainty

The Iasutzte of Opucs, The Unwersiy of Rochester, Rocnesier, N

York 14627

Raceived [uly 2. 1981

We describe a method (ur finding the tntensity distribution »f an vbject jtom 1 measutement. or measurements,
of its cross-power spectrum. Thus technique. iike the Knex-Thompson akorithm. mases use of the phase informa-

tion contained in the cross spectrum: it is based on a s

senting the spect:um of an object.

1. INTRODUCTION

Techniques such as Michelson. intensity, and speckle inter-
ferometry usually vield the power spectrum® of an object. that
1s. the modulus of the Fourier transform of some intensity
distribution. It is well known- that if the phase of the Fourier
transiofm is missing, then there is. in zeneral, no unique so-
lution {7 the object intensity. Consiraints such as oblect
positivity typically do not remove the innerent ambiguity.®
althouga it appears that in 1wo spatial dimensions the degree
of amdiguity is !25s than in one.*> (The analysis presented
in this Letter will be restricted to the one-dimensional
case.)

Additional information abous: the object is usually available
in high-resolution steliar interfarometry. [n this Letter we
use the further information provided by the cross-power
spectrum.’ In 1974 Knox and Thompsen” ¥ pointed out that.
in specsie nterferometry, essentially independent estimates
of the _Liect power spectrum My 107 L)} and its cross-power
soectrum {020%w + A)] could be obtained for a single small
« iiue of X £ #o/Nf where r; is Fried's correiation parameter
wr vmospheric turbulence.? \ is the wavelength. 7 is the focal
cangth of the teiescope. 2na 1w s the Fourter transiorm of
the object intensity orx). Thev nsed this additional infor-
mation in a boot-strapping algorit “*m to compute an estimate
of the pnase of the Fourier transform: the mean square error
of this estimate increases lineariv with spatial frequency.
This procadure has aiso been successfully impiemented by
Nisensox e: al..'” whereas other algorithms tnat combine the
.nformatinn contained in ilre power spectrum with one or more
estimates of the cross-power spectrum have been investigated
by Sherman.!! Frost ¢f af..1° and Aitken and De3auiniers.: -
Wa consider vet another way of using the information in the
Sress-Duwer spectium. hased on the properues of its complex
zerus.

The mportance of the zeros of entire functions n inter-
ferometry has been discussed by Bates'* and was recently
emphas.zed by Ross ¢r ai.*>'7 [n Section 2 we summarize
some elementary properties of complex polynomials that
represent the Fourier transform and power spectrum of an

= roas AN IRAIORAMe,

journal o
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ematic procedure fur .ocaliny the compiex zerds repre-

The proposed methud for solving the phase nroblem (i.e..
identifying the correct compiex zeros) is described in Section
3. 2nd a computational exampie is z1ven.  As in anv technique
of phase retrieval. noise piavs a crucial role. as is illus-
trated.

2. ZEROS OF THE OBJECT TRANSFORM AND
POWER SPECTRUM

We shall rastrict our diseussion to objects whose intensity
distribution otx) is a function of snly ane varible, thus in-
cluding separable two-dimensional disiritutions of the furm
Oorxy X2) = fixgix s Any such distribution that one en-
counters is square integrabie 204 sxists oMy within a finite
region. Asaconsequence, its Fourier transform Nu) can be
extended into the complex piare as an entire fnction vi'c =
u + e [tis well known that D12y can be uniery represented
DY e compiaX ceius X .. Ne ferm of a Hadamard
producti?

.
Mzr=d4ed T L ms el By

where A and B are constants. However, if 1 3iscrere trans
form 1s taken of the vbject. vniv a finite numoer of zerns, 12-
termined by the samplin; interval 5, represents obrect intor-
mation. [t is somewhat more convenient to examine theses
zeros in the compiex « plane, definea by*

wE et expt=2 ey

We shail detine the support of Jixita he Za and sampie at
N o+ lpomnts such that 5 = 22 N Then when Eq -2 s ap-
plied. the Fourer inte¢rai. Ea. 0 3 Secomes. ta- rom 3

oiegree N

Seter ol T FRSTRIRR LN, YR TR
o= Jer ek =2 i
J-
v
g =T Moy =g
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(a)

v-Plane

)

Vol. T1. No. 12, December 1981/J. Opt. Soc. Am. 1343

w-Plone

(b) /'_\ .

#-2lane

d)

‘or cach zero pair, 'd) The zeros of
te-0s *aman unchanted Irom tnese

1 oonstant factor . the zeros of the pelynomial completeiv
specitt w1 and hence X

I7 51x s takes on the particulariy sumpie form of a constant
within the intervai 2a. the zeros of Diw) will all lie on the unit
arefe ui = | at base angles o, = 2xn New = £ 22,0,
=N 2. More-complex ubjects are represented by dispiacing
zeros {rom these base positions. each w. atfecting a hicher
spatiai frequency as n| increases.’s Thereareonly N 2de-
grees of {rec lum. nowever, since the real and positive con.
seraints on x). respectively, force the zeros to veeur in
;ompiex conjugate pairs in the range ) < |#| < 7. Figure 1t
shows the zeros associated with a negative exponential object.
- vfieh 17 Gaussian random noise was added {see Fig, ra].
T'us particuiar object was chasen because 4l S0 of the zeros
1o sutside the umit circie, near <heir base angles. This maxes
-ne figures that foliow somewhat clearer but is not typical of
zern distributions. whicn zenerally also have zeros within the
st cirele,

In 4 stmiiar manner. we can renresent the power spectrum
Poav 28 an anaivtie tunction Pozy =020 On applying
s, Dand oo B towe see that the conjugate Minctien

dot e net o trns bz hecomes

N A

Tig. 1. 'a) A simpie exponentiai ubiect itk "t random noise added. o+ Th
abjectin ar  cr The zeros of the puwer spectrum ol ar. Berause of the oss of
fecross specttum oty with A = L3,
2 thy. ahereas those inside the unit circle are rorarea, caunterca ©

v zeros of w0 the compiex u piane that represent the
rmation e cannot chonse hetween (.| and | L/uy
cie are 1n increments of A, The correct
wise oy A = 1.3,

The divisions on the unit 2

By = e Ly

HAT TN A
= '[ 1

The anguiar disteipution of the zeros of ‘Pruv) is identical with

that of ‘Mu o [Fig. Trer]. However. without some basis for

choosing between u.| and {1'w,| we could construct 2V 2

equaily plausidie sets of .V zeros. each of which represents a

reai. poussibly pusitive object.

= e = Lw). B

jon]

O

3. RECOVERING THE PHASE INFORMATION

Let us examine the wav the phase ;nformation presentin the
cross-power speetrum Pru. ) = e + M) s encoded by
25 zeros. Extenaing bru. J) into the compiex « plane by
asing Egs. 21 and ) vieids

N vy Y - “.
Bra. A) = Ot iM\
"

j

Y

———— e s —
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x>

‘a

by - .. -t .. -
- 6.5 - N
L N .
. Al
,
. -/

25« .larxr =05 +br The
Thenner zeros nave been

se of The nDre
1rotated aver
Dsige

power spe~trum. Reguin iat eacn zero have
1 W0 reai sowtions fur . 1. etther those

tne cmitoire e or thnse oasrside s = |

. i3 2 complex constant.
One comotere set of zerns i cemains unchanged: However,

NREr -et D0 Aas teen fotaled tafonZn g an

TR

(]

in most cases. xnowiedge of A s sufficient to identiry the two
sets ... and 1w thus. in peincipie. the phase of Jrus can be
recovered [rom a sing.e caleulation ot P, A foro < A< 1 2.
However. if 2 sunset of the zeros Ui is invariant under a
s tation 4. then there wiil be zure than one possible choice o
wooand e u ! consistent with ‘b Ay for A = =427
Whereas the aumder of pussibie solutions is strongiv con-
strained Ay A and Sance s not o formidanle an obstacie as
AL tne Duwer spectrum. the Drobizm Can he resotted W any
EEET I IO W $ ¢ Jhowe ot A,

L0 ke save anobject That aas il its associated zeros
utside the it Circe AL u o, = L0%expimi2n = 1) N, ana one
CAnNot obtaIn 3 Ynigue phase soiation from the cross spectrum
ior ‘arteger vaues of A0 Although the positions of the zeros
bro L loare dentical oo those of the power spectrum, thera
t0e oryn twe pessiic < ulions, ither those (Nsids e

L e RIS

JOSA Letters

In practice it is often the c..se that the poaer spectrum can
be meastred more accurately than the cross spectrum. By
using a procedure similar tv that suggesied by Bates and
Napter.” it is possible to make use of the more accurate data.
We first determine an approximately correct set of zeros 'w,| 3
from the cross spectrum and then associate them with the
more accurate (but ambiguous: zeros of the power spectrum
10 obtain the new set. The extent to which this will prove
successit! depends neavily on the nuise characteristics of the
1wo measurements. as we can see in Figs. 3-3. Figure 3ta)
snows the zeros of a noisy ectrum (A = =131 from
which we can find the correct zetos and reconstruct the neg-
ative expenential object with =2.3% noise. Figure 4 compares
the same zeros 1 X+ with thnse of ths iess noisy power spectrum
1+1in Fig. lier. Inthis case we see that all the correct zeros
of the power spectrum can be identified. but using an even
noisier set uf zeres in Fig. 5 gives ambiguous. and aven incor-
rect. resuits in several cases.

1. DISCUSSION

In steilar speckle interferometry. estimates of both the power
spectrum and cross-power spectrum of the object are avail-
abie. We have shown that. if the noise is low enough. a single
estimate of the cross-power spectrum couid be used to find
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ditions the results of any method of phase reconstruction using
the power and cross spectrim must be Treuted cautiousiy,

-3 lane

- T« el - . . . . . . .
- - s Noise playvs such an imporiant roie in the phase problem
- TN that it would seem usefui to study the compiex zerus uf sto-
A chastic processes. The statistics ot reai-zero crossings have
T e been studied extensively. but, 1o our knowiedge. those of the
Lo complex zeros nave not.
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Correlations of time-varying speckle near the focal plane
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The properties of speckle produced near the {ocai piane of a lens wita a
zated. Expressions for 1n2 space-time ampiitude and inte

invest.

inearly transiating ditfuser in the pupii are
<orrejations are derived in the Gaussian-

fleid limit. The intensity correlations obtained ire not cross-:pectraily pure out rather impiv some degree of
speckie translation in directions both parailei and antiparallei to the dirfuser velocity. Lens aoerrations are ‘ound
o have a significant effect on the intensity correiations. and theoretical results are presented for defocus and sume
of the primary aberrations. Exper:mentai measurements with a rwo-detector instrument and pnheton-correlation
2quipment are found to be 1n good agreement with the theory.

INTRODUCTION

Laser scattering from moving diffusers has been a subject of
considerable interest in recent vears. It is well known that
when a converging spherical wave is scatiered from a linearly
translating diffuser. there are two effects that are observed
in the diffraction fleid. First. in diffraction pianes that ire
distant from the focal plane of the wave. the effect more no-
ciceanle to the eve is a general linear transiation of the speckles
before each speckle loses its identity. As the observing plane
aporoaches the fouus. the linear speckle motion becomes less
aprarent. as each speckle decorrelates after traversing a
shorrer distance. In the focai piane. the speckle tield changes
its form continuotsiy without an apparent direction of motion.
This second eifect is commoniy cailed boiling speckle.

The properties of the tim2-varving speckle tield have led
0 & number of suggestions for measuring the veiocity of the
aifuser to a high degree of accuracy.’-> It has been less
wiweiy aporeciated that the speckles in the boiling region
more subdtle propertizs that permit other information
about the scattering svstem to be obtained.

The present paper investizates the properties of the speckle
deic nezar the {ocal piane. {5 1 that the space-ume
intensity correlation neur the focus is strongly fependenton
the shape ot the wave front incident upon the z.:7user and that
't mayv De useful in measuring aberrations to a high precision.
Even in the focal plane. the intensity correiations are shown,
to imply simultaneous transiation of speckles in opposing
directions. The resuits of experiments that support the
theory are presented.

acsse

THEORY

We zonsider the 2xperiment shown in Fig. 1. Monockromatic
piane ~aves !rom 2 laser are incidenr upon 1 lens with 2
transiating diffuser ively in <he pupii plane. In this
situation. speckie botiinz is observed in the focal piane of the
lens, whereas varving degrees of translation are observed
eisewhere. [f the lens were perfect. one would expect that the
contribution of a scattering center of the ditfuser to the am-
piirude in the focus of the lens would be constant. without anv
1ecnusing as the agitfuser translates across the diamerer of roe

nugn Hoawvever, o the faegs af an aberratad l2ns, the m.

plitude from a scattering center would appear to change phase
during its transit across the pupil. This phase variation is due
entireiy to the deterministic aberration of the lens. Thus it
ts apparent rhat the benhavior of the focai-plane speckie mav
orovide some insight into the phase properties of the lens
pupil.

It the diffuser motion is nearly transverse to the optical axis.
Doppier effects will be negiigible: this permits the use of
complex ampiitude in the analyvsis rather than the anaivtic
signal representation of the optical fi2ld. Consider the case
when the complex amplitude in the focal plane A(x.y, ¢t} isdue
to a large number of independent scatisring centers of the
diffusez. When the random complex ampiitude immediately
arter transmission through the difuser atZ, 7 has a uniformly
probabdie pnase on the intervai ==, 7), and a few other non-
restrictive conditions are satisfied. it has been shown that A{x,
V. oy degenerates to a complex circular Gaussian prucess as a
consequence of the central-iimit theorem.® The statistics ot
sicn a procefde are unigueiy defined by the space-time am-
plitude correlation

AT v iz - Axon - Avir T 1)
wnera - denotes the wnsemb:e average. We then seex to

express this correiation in terms of
scattering svstem.

he parameters of the
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The analysis will be restricted to linear diffuser motion. wyth
the veiocity vector along the - & axis for convenience. Hence
if a1&. ) denotes the xmplitude immediately after the diffuser
at time ¢ = 0. then at time ¢ the ampiitude will be denoted by
at$ = ue.m where ¢ is the diffuser speed. The focal-piane
amplitude may now be found {rom the usual diffraction in-
tegral for propagating at§ — vt, n) from pupil space to the focal
plane’; that is.

exp (k)
= —————axp

iINf N

Jf at& =ce, ) PtE 1)

(B4 4 _vn‘\]

Atx v, 0

LI
xS e ye)
7.

where \ is the wavelength and k is the wave number of the
fight, (", 7'} is the compiex pupil function of the lens. and
7 is the focal length of the lens. Forming the product 4*:x
.t Aix + Az y + Ayt + 7) and averaging over the en-
semble results in

AT . O Alx = Ax, v+ dy, o+ T
e‘(p\u) f “e
@t -
22 1
Xaf™ =i+ .-‘a. nIPD PE 7RI g™
f—iz
X expi—‘_—- [xE" =&V +3ip” = 30 = Az&" + Avn’|
]
X ddnderda”. ()

whete

x=%_l_.kz’3+_\_\'-‘+'2x.l_x 2 A 14

If the diffuser is uniform it is reasonable to assume thataté.
31 is @ statistically stationary p.ocess. (is Currelation funciion

then depends only on coordinate diiferences. 20 that
PR SRR A TR RN e W
ER T B R NP1

If £q. 15 is inzerted into Eq. * 31. and the sum and dirference
coordinates

D=L

0 =" ="

NS

=g =202 he

]

1re intreducea into
1uZe0ra then vieids

R N e

exp Hin) . . -
Jf wr o WeE, g dédn,, T
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t3)

Thus (&, ng) depends oniyv on the propertiss of the fens.
whereas Eq. 17 takes account of the dirfuser properties
througs an autocorreiation type of integrai.

To proceed furtner. it is necessary 10 maxe an assumpiion
about the form of the correiation function e+ 3, 7. A careful
anaivsis wouid taxke into account the interactidn of the 1nci-
dent wave with ih2 user struicture to determine 05, .
but this is a formidable probiem. However. 4 consideraoie
sumpiification may be obtained in the limit of fine A:iffuser
structure,  This limit may be formally taken ov resiacing the
correlation Cy1 3 = 7. nas by the Dirac deita function & & ~
U7, na). with the result that

CATI M DA - Axl vy v A + o
2XD (ix)
= —— Wi
N ot
exp tixy [—u"\' ]
= —oTaeNpl— Az e

LmPi =

X exp[:;5~_\x:‘ + Al v»ld:‘dn. 9

In this iimit the ampiitude correiation s thus preportional to
the Fourier transform of a pair of displaced pupil functions,
[t shouid aiso be nuted that if £ &, 1y were to have a finite
width, *ne correiation of Atx. 5. oy would he a smoothed ver-
sion q. 191, as prescribed by the autocorreiation integral
of Eq. 1)

Of mare practical inlerest s the 'ntensiis “orreiation
{unction since. uniike the amplitude correiation. the intensity
correiation s directiv measurabie. The calcuiation or the
coeraiation o focal-pilane intensitv fry 0 o 5 stragar
Torwird, »ince fuf 4 COMPieX LrdusHan process

AVIE SRR IRV R SR S TN

= A%z s A+ Ay Ay r e s i

where Al denotes [ = [ . 1115 aiso conventent 1o Jderine the
‘ntensity correiation in the normalized furm
Az v 0 Qe = dx.n = A =2
B

AURS RS

Theguanuey [ ooy e fonnd trom Eqg. 9w
== The normanred ntensity correfation s
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4= ff TPIE, m|cdedn. (13

The result is stationary in both space and time variables: the
spatial stationarity is a direct consequence of assuming a3,
m to be deita-function correlated. Equation (12) has been
obtained elsewhere in different forms.3? [t can also be seen
that the temporal correiation with Ac = Ay = 0 is the square
ot the modulation-transfer function of the lens: this has been
noted by Yamaguchi et ai. 10

In order to include aberrations explicitly. the substitu-
tion

P&, m = P&, mexplie W(E, m] (14

may be made. where Pf£, 7) is a purely real pupil function and
Wig, a1 describes the aberrations of the pupil. This results
in

MAz Ay = Il'; IJ]‘- P —~vr/2 ) Pig+0

2

X exphg [WIg —=vr/2 g — WS +or/2.mi)

2

—ik
X exp{Tfl_\xS + _\_\'n)]dfdn P 1)

Expanding both aberration functions in the exponential into
1 Tavior series vields

o
Jf Pig—ur 2, p RIS+ r
-

X expltkT(E, n)}

L
A2

X exp{ A+ _\:\'nr]dfdn ) 16)
1
where
L NP - R il B
Tvém=2% |L‘T"2);"‘(_—.J Whe om. (17
P} SE]

This is a useful representation. since for defsecus and most
ot the primary aberrations. only the term proportional to
¥ 3£ survives in the series of Th&, n). [t is aiso interes
to note that oW 'a< is proportional to the transverse-rav ab-
=r7aLoN of Zeometriai 0ptivs. ithough fur rther aderrations
ihe 'gher-order terms become significan:.

OISCUSSION

Mich of the time-varving speckle work that has been done has
pertained to the scattering or Gaussian laser beams from
diffusers. In this case the pupil funcrion is Gaussian, and.
ssuming that it is aiso purely real.

el m = axpi= St + a2

N
1 b 1%

where
stitution shows that

bR -
¢ -

AmpPiE+er 2

= expi— &rexpi— n/rtlexp{—~ it dal (19)
Since this product of pupil functions factorizes. it immediateiv
Dotiews from Eq. + 12) that the space-time intensity correiation
Jietorzes o the sense that

.
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NAx Ao, mr = F A/ Ay, 120,

where the /, are functions. This ractorization occurs only in
the focal plane and does not occur elsewnere.?

The factorized correlation of Eg. 120) describes complete
speckle boiling with no speckle translation. 1Some degree of
speckle transiation. in the Ax direction. for example. aould
require a correlation that is a mixed functionof Ax and 70 A
correiation that factorizes is commoniy referred to as cross-
spectrally pure. since an anaiogous property of correlations
in conerence theory is known as the cross-spectrai-purity
condition.{t12

For hard pupils. there is no full factorization in the focal
plane as there is ior the Gaussian pupil. A particuiariy simpie
example is the square pupil described by

Pig. i = rectt i corectinial, £21)

where recttx is the rectangie function of width 1. One may
show from geometry that

P =2 mPit+oeri2m

rect( =
a —jurr|

)recu n/a) for ivr| <a
=0forlvrf2a 122)

It is also possible 1o inciude d2focus in the calculation with the
aberration function

. . 4m\ s
"(;,r]’=—2—l;'?ﬂ').’ 123
a

where m is the number of wavelengths of defocus at the
margin of th: puptl. When this is substituted in the series in
Eq. t17), oniy the lowest-order term survives. At this point,
straightforward integration of Eq. (18] results in

\MAx. Ay, 7)) =

[ _{8mer gdx|l?
pr=ge
[ A
As
‘it T_:__\
N .
X —— ‘orivt| <a.
i_a.l}')l
ST
Ndx, Ay, rr=9) Dot v 2 oa. 24

Thus even in the focal plane \m = 0), there is no factoriza-
tion of the = and Ax dependence of \1dx. Ay, . Figure 2
snows a plot of \ versus 7 for Ay = 0 and several vaiues of Ax.
{t can be seen that when Ar = v\/'a) tthe tirst zeco of the
spatial intensity correlation). chere are correjation peaks
niaced sy mmetnically on hoth sides of the = axis, A possible
interprecation of is that the speckie transiates to some
Jdegree 1n directions hota oarallel and antiparailel to the
section of diffuser motion.  This interpretation of the shi
peaks shouid be taken somewhnat hightly, as for Ax > (\f )
three or more peaks ex:stin the - rrelation. although these
offects hecome rather weax,

Nu shirted peaks existin :

correjation fur ar-

Sirvary Av when Ax =49 This s becauise the A dependence
factoriees i TR Ve b L oailects oy
o ——— -
¥
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T miia af /v

Fig. 2. Space-time intensity correlations in the focal piane of a lens
with a square pupil. The curves shown are for Ax =1, 0.3.0.73. 1.0
speckle racit. A speckie radius «:p) is defined as the position of the
first zero of the spatiai intensity cotrelation. which in this case is \/. a.
where ; is the focai tength and a is the width ol the lens.

- %

Space-time intensicy correiations in the focai plane of a tens
square oupil. The curves are for Ay = 0.1 30,75, [.J speckie
1

strength of the temporal correfation and dones not oh
ita form, as is iilustrated in Fig. 3. As an aside. it saould be
noted that the r derivative of MAx. Av. 7) is often discon-
tinuous at ~ = 0. This 1s unphysical and is purely an artifact
of taking the fine dirfuser limit in passing from Eq. 19}t E4.
il

The space~time correiations are aiso strongiv dependent
on the defocus parameter m. The temporai correlations for
several vaiues of Ax are shown in Figs. 4 and 5 for m = 1).023
waves and m = (.09 waves of defovus. respectiveiv. Inthese
figures the correlation for Ax = 9 changas oniv slightly.
whereas the other curves hecome somewhat skewed. This
:mplies that the speckie s heginmny "o nave 1 preferred d&i-
czction of transiation. wn "0 De expected 1wav from:
“oeus. {tis remarkabie. 2owever, thata detocus of N 40 ca

noticeabie skewness in the correfations.

Fur defocus greater than about . 3. the temporai correiation
with 2x = Jv = ) becornes rather narrow since it s refated 1o
-ne modulation transfer function. The other temporaj cor-
reiations with Ax = ' 1,30 Decome narrow with oniy 2 singie
sigmagicant tapracet teax T
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EXPERIMENTS

A series of experiments was carried out in in attempt to
measure the intensity correlations of a square pupil. The
apparatus used is shown in Fig. 6. A translating ground giass
was place in the pupil of a well-corrected doublet of 365-mm
focal length. The lens was mounted on a transiator to provide
a fine-focus adjustment. [n order to obtain a large depth of
focus. a 1.30-mm X 1.30-mm aperture stopped dewn the lens
This allowed the lens defocus to be controlled precisely, since
a lens transiation that was large enough to be measured ac-
curateiy produced the small amounts of wave-{ront defocus
that were desired.

A beam splitter after the lens allowed twa photomultipiiers
1o be placed in the observation plane. One detector was
mounted on a precision translator, and a viewing telescope was
used in the initial alignment of the detector apertures. The
detector pinhole diameter was 25 um. which was considerably
smaller than the speckle radius 1N/ 'a)of 178 um.

The pnotomultipiiers were operatad in the photon-counting
mode. and the cross correlation of photon counts was mea-
surec with a 128-channel Langiev-Ford pnoton correiator. It
may be shown that the normalized cross correiation or pavton
counts is equivaient to that of the classicai intensity.’> The
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pnoton cofretator v as int-riaced with an HP 33 computer.
A nich processed tae data and corrected trem Jor sk cursent.
aithough this correcticn was smaid.  Typicai signal leveis
4 % 103 photons. sec 1G.» photon per sampie time on the av-
»rage), whereas the dark count rates were tvpica:'v
pnotons. sec in the two detectors. Photon rates were sut
ciently low so trat dead-time erfects were small and couid be
ignored.

Many experimental runs were made. and typical #xper:-
mentai data for the “heoretical temporal correlations or Figs.
2-3areshown in Figs, 7-10. The me2surements are hased on
roughly 000 statisticaily independent reaiizations of the
speckle tieid: the resuitnzs statisticai error is 2-37 Oniv
:dd-numbered cnanneis 5 *ne correlator BULpPUL are snown
in the figures: otherwise the cata points are drawn too close:y
to be resolved easiiv.

Some of the data have an apparent fiscontinuity at - =,
This was because he photon correiator rieasured correiations
aniy tor posit
mtuned sy
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.~ .rizs o7 AV
Fig. 11,  Theoreticai space-time tntensity cofreiations of a lens with
a circular pupil and 1.6 of orimary sphericai aberrations balanced
with =05\ of defocus. Shown are curves for Ax = ). 2.5.0.75. 1.9
speckie radii. A speckle radius is defined as 1.22)\/ 2, the position
o the fiest zero of the spatiai intensity correlation.

space-time (niensity corre{ations of a lens with
(o4 V13, g provortional to &

sransator 1nd aiigament eerors. The correfations are. in

zeneral. within .1 ot the theoretical values. with many mea-
sirements agreeiny considerably better than this,

CIRCULAR PUPILS AND ABERRATIONS

The space-’inte intensity 2orreiations of vircular pupiis and
Dupiis with higher.order aberrations are ditficuit ro evaluate.
These cases ar2 cleariv of interest if the correlations are 1o be
used to assess the state & correction of 1 tens, [t s then
fecessary Ty fesolt to numericai Techntgues Ty evamate At dx.

dNCES,

s neen carned out with comouter-Zen-
srated Causs-Legenare guaarature, [t has heen {ouna “nat
the correlations fur 1 circular iperture 1n the diffraction.
iimited or defocused :sies are sumilar ‘o resuits that have al-
“aady heen presented © ¢ che square aperture. so they wiil aot
" hown zere. Prire s the temporal
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simiiar 1o those with defucus. 11 snows U8\ of primary
spherical aperration halanced vith =0 45 o 3efocus. The
resuiting wave front 2as 2 max:mun; Getormation of =), 23\
This corresponds to the 0.707-a0erture zona-ray focus, which
is often considered 1o be *he best focal piane.

Primary astigmatism in the pupil ieads to =ffects identicai
with those with defocus if the ditfuser motion is parallei 1o the
tangential or sagittal planes. This is because \1dx. 33, )
depends on g1’ &%, which is itseif ‘ndependent of 7 in this case;
the correlation is then affected oniv by the quadratic wave-
front curvature in the £ direction. Qther orientations of the
diffuser velocity. however, lead to other results. Finaily,
third-order coma in the pupii does not cause any skewness put
rather attenuates the "aiis of the temporai correlations. This
15 iilustrated in Fig. 12

SUMMARY

We have seen that the space-time intensity correlations of
speckle in the focal plane do not ubey the cross-spectrai purity
condition in the cases of square and round pupils. True
speckle boiling is not then observed. and instead there is
sgockie transtation in directions parailei and antiparaiiel to
the direction of diffuser motion. The space~tume correiations
are strongiv dependent dn aberrations and may provide a
simpile methoa of mudulation-iransfer-:nctivn measurement.
The present work mav possibiy be generalized to include
nonlinear ditfuser motion and diffusers with a deterministic
snape: tnese considerations wouid have applications to remote
sensing.

It may also be worth noti;
theoretical resuits presen
induced speckle pas
measured corre
placed time corrz
observeqd steilar e
translation of the inhome
ACTOSS the telescnne pupet ar

that the exgperimental and
here have ties to atmosphericaily
in astronomucai imaging. The
T ateilar speckle images exhibit dis.
On Peidrs simiiar to those of Fig. 2.1% The
2 presumably due o the linear
s atmosphere 'i.e. a diffuser’
ha wingd <pead,
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The spatial-temporal incensity correlations of stetlar speckle pattems have 2een measursd over 10
Suly 4. 1981) 3¢ Mauna Kea. Hawaii. The measurements indicate that the intensity correlation was
most mghts of odservanion. The corzeiation time of the unage was wypcally 13 ms. wide the

chezange of D.4-~1.1

1. Introduction

Because of the fluctuaitng aumosphere. the stelfar
image Trrmad By 3 largs earthbound ielescope is 4
timeva:ving specice pattzen. While the size of the
snveiope of the stzilar speckle image is much larger
than the diffraction limit of the telescope. the speciles
piesent within the envziope are comparapie 1o the siz2
SPthe Alry dise. Tats hugh frequency siructure is the
Dasis Of the impartans technique of stetiar speckie in-

To31 ppmethad of diffracuen linned

rerrero My
umaginy.

in his caper we desenbe measuraments of the em-
ooral and spanal.iemporal correlation properues of
stellar speckie images over ten nights at Mauna Kea.
Hawai. These measurements are important in chousng
the vpumum eXposure time Of speckie interterometry
(2-6]. and sre relevant o other iechmgues of 4
fracuon limuted imagme (6.7]. We define the normai-
1z2d space-iume INTEAsIY Jorrsiaion O (e speckle
mags 4s

Al
Clx. . X+, 718~ e
Ll RSP VAN (E SRFD

— [

where X, 1nd x» 321012 spanal ponts in the image.
and

A =Lxy i) -l ) 12

w5 (June 24—
sross-spectradly pure an

2ance was within

€

since the speckle image (s nars +spanally station-
ary. In our measurements x, - ¢y = Ax is small com-
parad 0 the unage enveivge, Th2 yiiznsity correlation
15 aedriy stationary Jor such Ax. 30 practically we may
write the corrzlation as

Jhx

Clax .ty =

and =v Parr .
LN scde i h2 spls
-7 ms. The space
sured oy Dainiy 21 ai | g
York, These and subsecuznt unpublished spa et
Medsuraments 4t the sam2 51t .mpiv that the specides
2nd 1o fJow n twe directions sumultaneousiy: these
2l and anupasailel to the direcuon
i phase transiation vwingy in the puptd, Studies of cor-
tonng frames of monon preture GHm
heen reporizd 7y Lohman

rections are par

i
]

relalens I ne

1T Imserving sl
zoot. Toour s d spunai~
remporal inensity correiagons have never Seen med-

sared At zood site. An snderstanding of iniage prop-
arties at these loculions s gnpurnan:, parnialarly smacs
SUCIRLE IISIIT eIy (S s IR LAY B

3
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2. Experiment ters of mean waveiength 350 nm and bandwidth § =
N The integration time was 0.5 ms or 1 ms. depending
The instrument used has been discussed in more de- the image time scaie. The correlator was able (o obt.
wail zisewhere {10] and is shown in fig. |. The equip- a fow noise correlation (< 3% noise) with less than ¢
ment was mounts€ at the Cassegrain focus of the 61 detect2d photon per sampie Wme on average during .
<m tefescope at Mauna Kea. Two photon~ounting pho- 100 s experiment. Atmosphneric seeing ranged from
st romuitipliers (an EM1 9862B and a Hammamatsu 6 arc s durng the 10 nights of observation.
R9I8) were positioned to 2 xnown Ax within 3 magni- An HP-SF computer processed the data and store
fizd steliar image. A 128 channe! Langlev—Ford pho- it on ape. The correfations were correctad for the &
son correlator measured the temporal cross correiation current of the detecrors tless than 20 counts s~! 1y
of photon counts irom the two detectors. It mayv be cally). Signai levels were sutficiently low (300-300:
shown that the normaiized cross correlation of photon photons s~ 1) 50 that deadtime effects were smail ar
counts is equivaient to that of the ciassical intensity could be ignored.
Fi [12]. The space—time corrzlations were zenerated by
or repeating measurements sequanually for a series of
vaiues of Ax. 3. Results
We observed the brightest unresolvapie objects near
= zenith that were availabie (a-Bootis and a-Lyrae). The The measured correlations possess a short time sc
a speckle images were more compact and had a longer component (10—70 ms) due to the speckle boiling a:
&+ time scale at Mauna Kea than at poor sites: this pro- a much longer. nearly linear, component (~! s) asso-
he vided a larger number of Jetected photons per speckle ciated with random motion of the speckle image enve
0 in 3 cerrelation time of the image. As a result. measure-  lope. Since the image motion correlation was rather
Lk ments werz made with less spaual. temporal. and opti- variabie J7om 2xperiment o experiment, we have di-
- zal Danéwidth integration than previous work. Detec- vidad it out to obtain the correiation due to speckle
te sor apertures of 70 um were used. \:‘hx‘ie the Alry dise poiling oniy. This procedurz assumes that speckle boi
st ilvame:er was 420 um in the m:lxgn.nieu image plape. ing T\nd imags motion aze statistically independent, a:
N Th Wwas munimizeZ Sy interierence ril- is discussed in rets. {8] and [3].
st A selected data series is shown in fig. 2. Each serie:
a includey separate measurements of the positive and
4 V2T a0t ‘ 15 Do colinear
T M i
€
(S S TenT
)
D)
' ~
:
a
1 RpIv pr ) i
T e
2. Cross-specizally pure imags inteasity orreiziions fro
1t L0 aiy 3 The cunves aze. in order of decreasing
: € eurdnplacements ot ax =), 15 )3,
13
¢
5 )
;
Vs —_— - -~ . AL
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ments of Ax =0.0.25.0.5.0.75 and 1.0 speckle radii 7,
with such 2 measurement raquiring roughiy 20 mun. [t
2an be seen that the correiations weaken without
changing their form as Ax increases. This was found to
be true rezardiess of the direction of Ax. Fig. 2 is typi-
cal of what was found on 7 of the 10 nights of vbserva-
ton.

These resuits indicate that the space—iime intensity
correlation is cross-specirally pure: that is. the correle-
tion may be written as the produet of 1 space-onjy part
and 3 time-oniy part. It has pezn shown that this is
valid tf the reiescope pupil contawns a shase procass
shat evoives or boiis without any general linear trans-
lation of phase structure [13]. Indesd. visualization of
the phase in the pupt by xnifz-edgs tesiing the tele-
scope mirror revealed that doting of phase structure
occurred predominanty. This is in contrast (o pravious
measurements at Bristol Springs. wher2 phase transia-
tion occurred consistently in the pupll and image corre-
tanons were decidedly cross-speciraily impure. On only
3nz night (night 6) were cross-specirally imoure corre-
faticns observed consistenty at Mauna Keax )
thouzh the observad effects were rather weak. w
small displaced correlation peas
speckle cury
Duiing nights 2 and

o,

F! 3 Cross-spectratly tmpuse image miensigy correfatic s
from night § «June 293 [n order of decreasing vante
the curves aze for colinear distlacements of ax =31

PR and 1LY sveckde i,

oE: Osp

Fig. 4. Imagz inzensity correlatuions
sagii measuied on night @ The ou
12d for image mo

orngn.

we vpserved an unusual Tect. While the measurad
autocorreiations were not unusuai sorrelanon with
Ax = | speckle had the unexpeoted shape shown in
4. These correiations have not been corrected {or image
motion. and so possess the long linear wail. However,
boiling part ¢t the correlation 20es below tha linear

part of the correiation. When corrscted for image mo-

1on as described. this leads to 1 negative intensity cor-
ralation, T4 guussian ampiitude

srocess. [t s possivle that th g
in 3 stauonary maane: dunrg these

L1 eSUr

N -, -
A
\ VD e =
: : —
-5 s -
i - -t

{10100y "WN2n Junng
~Nn o N ons
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’

Fig. 5. Temporai image mieasity wiocorreianons measured
or ughts =11

. ¥ and 6 show mtensity autocorreiations t dx
=7} for all nights when measuremenis were made. The
average correlation time of the image was 13 ms,

; during the sscond night it incrzased over two

oetelt

qouts from L2 ms o 60 ms, The intensity variance C{0,

C-i howsver, varied considzradly Derwean 0.4 and 1.1,
Tough vaiues were r2asonably consistgn: on any one
aigai. If the speckie amplitude were gaussian. the in-
t2nsity variance shouid e unity. the v_n in2
spatiai integration (the most signiicant 2
r2iuse this to approxamateiy 092, Gaassian image
15110s vCCUr whten there ace u larg? huiiver of corre-
cells of compizx ampiitude within the pupil and
277ont phass nas 2vanance
Thus may aot have z22n valid Jor our reanvay smal
2igscope dunn g zood seeing tonditions. We ars car-
2. however, that the low variances were not due w
sur zquipment, whicn had hesa sheckad out carefuldy
20 2aussian speckle in the lunoratory.

4. Cunclusions

In pnotonaimita] speckis interferomery, “he ypu-
T INPOSLIR LMe IS 1DPIINTIAREY 23UuL 10 T2

Tne correldlion tung o taimage [4.0]. Jur measure-
s at Mauna b

e

CHawad show an

CUTIDIN DY AN 28NDO-

sure tme of 30 ms. The int2nsity variance, however.
varied from 0.4 10 1.1, [a contrast 1o measurements at
1 poor observing site (Bristol Springs, NY), the space~
time tnt2asiey correlation was cross-spectrally pure on
most nights of observation. It showed an anomalous ef-
2t wiich we are unable 1o 2xplain on two of the
nights.
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Measurements of the wavelength dependence and other

properties of stellar scintillation at Mauna Kea, Hawaii

J. C. Dainty, B. M. Levine. B. J. Brames, and K. A. O'Dennell

The vartanes of i
counting and on-i

maeC range were nserved, and tne opserved 1
By a2 turman Lstnioetion All tne measurements were made at Mauna b

I. Introduction

A large number of measuremen:s of the :tasistcal
prouerties of stellar seintiliation have been repuried in
thz literatiire 1zee Refs. | and 2y, To our knowiedue.
however. nu exiensive messurements fave been made
at very hizh quality astrenomical obzerving <ites. and
this motivated the experiments described in this paper
wnich were made at Mauna Kea Observatory. Hawaii
rali.iude 4.2 k) during an eleven night period in June
and July. 1931, The main experiment was the mea-
surement of the wavelength variation of the refative
variance 77 ¢/ - secondarv experiments to measure the
spatial and temporal properties and the higher mo-
ments ol stellar scintillation are also described.

1. Equipment and Data Analysis
Observations were made using :
TgieEcine sguipped :
sootumeter svstem  shown in . eid lens.,
anteh lies in the normal terescope image plane. images
he primary mirror onto the detector planes at a max-
afication of 1927, The meastirement apertures can
he seiected inaividuaily in each channel and adjusted
*u be superimpozed or dizplaced rom each other by a

OIS t Mo nester. Institaze orpocs,

Rucnester. Now % rx &
Receved 12 Septemner |25t
Wb 333 =2 07 e ansa] o

LIRLODnc e Soeiery g e

B e g7 st Il - Tt osgrt t23l

sty Ol steilar serntiilation nas pe
e digitai anaivsis techmgues. The
ov the theory of Tatarske  Measurements o1 the temparai corretation
moments of the probabiiity density functton of scint, :.1on are aiso de

Measured as 4 CINCLAN ol W 1441E0ETA 1SN PROton
perimental Jata tre sonsistent with that preaicied
atensity anc the higher
Time scates in the L.7-10-
ivaoser than tnose pradicted

rher MOMents were consist

ex Dnservatory, Hawat,

-

Knhown amount. A tvpical aperture diameter i3 0.75 mm
at the detector piane. equivalent 10 27 mm in the pupil
piane. Interference tfilters can aiso be placed in each
channei.  The photomuitiptiers 1EMI 98628 in channe!
A, Hommamatsu RE23P inchannel B) both have 5-20
phoutucathodes and dre operated in the photon counting
mode.
The stat
measurea
arerw

10D compl

cai properties of the photon counts are
=+ using 1 Langleyv-Ford DC123 digital
interiaced ro 2 Hewler:-Packard 85
[ the experiments described below
the corrsiator 2zedin either the autocorrelation
mode or 3 31a: Alstogram mode,

Theautoenrreiation mode vields a 12%-channel esti-
Mate o tae 1uiaeorteintion function Coy; A2 of the
photon ¢ounts 7 wetaine’ it successive time intervals
ipacec LI oipart

izl

@

NT

he tutal number of samples (typically
Lot —iom it s weil-snowns “hat the normalized cor-
rejation fUnchen o photon counts simply equais that
ot the classical measured intensitv [ vintegrated by the
meastrement procedurer except at the origin:

where N

B
= '

Thus. inthe aurocorrelation mode thiz insgrignent Zives
An unbrased eslimate i Hhe autlocorreiation Mincton of
iniensiiv. aven nougn averags photon rates tvoically
lie in the '1.3-10 ranze detected photons per sampiinyg
time A¢, dependisg on the variance of the intensity.
In the dual histogram mode. two 64-channel histo-
grams of the photon counts n, are measured simulta-
neously. enablinz meaningiul compariscn experiments

PRI
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Foot Dualveotometer svstem fnf Measuslry (e ~Lansticdi preo
nnlanon

arties of steilar s

1o e carried out on quasi-stationary processes such as
stellar :cintillation; this mode was used for the mea-
surement of the wavelength dependence of the vaniance
o seintilation. The probabilite density funiction of the
measured classical int. 1sitv 20/ is related to that of the
proton counts ptr i by an inverse Poizzon transtorm.”
T® » normalized factcriai moments ro of the photon
counts are simply equal to the normaiized moments u,
of the classical intensity:

e 3 onmoan =l - 1 no-mmeont
e ] 1"
e T da [Nt}

Thus. th2 normaiized factoriai moments ot ‘e photon
_eunts which can pe caicu:ried from the medsured
A3tufam o provide an intigsed estimate of tne
normaiized mements of (ne rrensity The factoral
moment: 3ave tu e corrs rdark currern: anc the

Ptime ol TltnouIn o oooir ase

recliot vassers

FERN
Cpicardars s s aere
23ana 3sec” nchan 1and A, respectiveln and
the pavlon raies rase:y exceeced 2% (U7 sec” aitha
counter dead cime of 3¢ nzect. The use of photen
sounting methods in the measurement of stellar sein-
tiilation 13, of course, not new.’ 30

The stars a-Litae «Veza and a-Aqguilae 1 Ajtair) were
qsed for the observations. The tlux irom w-Lyraein-
cident on the 2arth’s atmosphers is ~3.5 X 10 photons
cm~inmT- cec”™- at 320 am.tt On the average we qge-
sacted ~0 ¥ photons sec”T' in channer A4 using 2

BTERUTH

- aperture area and Ja zreen iilter [\ = 333,
WHH: = 3 rnm,. vieiding a collection erficiency of

’ chanpel B ie. +.57 overall
coilection efficiencyy. This tigure includes tosses due
o atmosoheric absorption, telescope optics. and the
optical svstem of the dual photometer as weil as the
nnotacathode guantum etficiency. and it would be
difficait to substantiails increase it. [t was not possibie

(SR
v
T

1o reduce the amount of spatial and temporal integra-
tion without increasing the statistical error: for the weak
erved. 2 pioton ey ol 3-10 per sampie
red 0 vieid an error of 1-2%,

seingiiiation o
time was regu

{i. Waveiength Dependence of the Variance
Tatarski’s theoryvi< of wave propagation in a turbulent
medium predicts that. in the absence of aperture aver-
aging, he reiative variance ot the intensity of scintil-
lation o= ! 2 = uy = 1}is proportionai to \~" f. where
\isthe wavelengih. Early measurements by Mikeseil
. “ Nettelblad.'t and Protheroe'” indicated that
the reiative variance was independent of wavelength.
althouz?h these measurements involved 2 signiticant
1mount of aperture averaging. A study by Burke®s
Usinz an anaiog detection scheme and 28-mm diam
apertures showed a dependence on waveiangth but not
as strong as the V™ " zependence. On the other hand.
experiments invoiving the propagation of laser beams
over horizontal paths- > with effectively no aperture
averaging are in agreement witn Tatarski's theory for
unsaturated turbulence. We wouid not expect the case
of vertical propasation to differ appreciabiy from Ta-
sarsxi’s theory. particulariy in view of the faet that the
nredicted waselenzih dependence of astronomical
seeing nas heen contirmed over verrical paths.t?

A Theory
The general expression for the relative variance is,
£noring any time (ntegration,

g 0 Y=ok 38NY J" dhCith)
0

x f.;';';'" Bstnra N IR, )
0
woere A s the wavelength,
-1 s the altitude,
o s the structure constant of refractive-index
fluctuations at altitude A.
< ~he :patial frequency. and
U0 s ine transter tunction of e measured
averwure.
it s clear frrem Eq. «4) that the relationship between the
refaiive variance and wavelength is not straightforward.
and depenas in particular on the measurement aper-
rure:st <= for a very small aperture [T4,) = 1), Eq. 1 4
reduces to

g ] xS, 3
whereas for a very large aperture of diameter D.
A A e

The wavelenzth dependence of the variance tor a
measurement aperture that is neither very smail nor
very large depends in generai on the variation ot the
structure constant C+ with aititude 1. We shall assume
that a sing-2 thin laver at altitude n; contributes to most
of the scin.Jlation. In that case. Eg. 14 van be written
for a circuiar measurement aperture of diameter 2 .-

Capnt t382 0 Lo 10w




i
tax. T
|
i

cx N
nd J:-vis tne first-order Bessel
function of the Yirst xind. [Unimporiant constants of
proportivnality have been omitted from Eq. 7). and 7,
shouid be regarded as a constant.]

The right-hand side of Eqg. t7) has been evaiuated
numerically: the results of this caiculation are given in
Fiz. 2 which shows the dependence of the relative
variance on wavelength for different diameters of the
measurement aperture iexpressed by the ratio D\ Ay

- R, 2
wn
- 3
- 22,37
: 3\ N
3T
ra gt e
varance
" e
- ety
ok
= 120t
,
pXot
vl 50¢ 50C 3
AJnm
e 2 Vasation af the reiative variance weth wavetengtn tor dit-

ring iperture 1 specifed DV the ratw
singie.aver. Thevariance nas
3 e -nmoAuveengtn anc
The =" B power iaw 13 obeved 1o D | 7. =1 and there
> S0 JEDEndence of wavelenytn it I | 1. - =

Table |

Thus. if the vaiue of D’y 7. is known ur can be esti-
mated [rom a secundary experiment. the predicred
variation of relative variation with waveienygth can be
found from Fig. 2. Nute that for no aperture integra-
tionvie.. Doy 7. = 0) the =76 power iaw is obéved: it
can also be seen Srom Fig. 2that for0 < D'\ A, < ».
there is still an eifective power law dependence over the
visible spectrum ¢7 = \™7, with 7.6 > o > 0.

B. Experimental Results

Simultaneous measurements of the prehability dis-
tribution prn) of photon counts were made for pairs of
wavelengths selected by using the foilowing tiiters:

red i =\ =839 nm. AMFWHH: =

green (s -\ =335am. A\ = 3am.
hige +Br = \ = 404 nm. AN = 2 nm.

Since the photomultipiier in channei B had a tendency
to record a slightly higher variance than the one in
channel 4 presumably because of nonuniform sensi-
tivity of the photocathoder. measurements were aiways
repeated with the filters interchanged between channeis
A and B. A wpical experimental sequence involved
taking three pairs of simuitaneous histograms for the
{ollowing filters in channeis A anc B, respectively:

i
GG.GRGBRB.RG. GG BG.B R This se-
er change between each

quencing requires oniy one I
set of data.)

The sampiing intervai A¢ was varied from night to
night depending un the measured correlation time (see
Sec. [V typically, a vaiue of 0.5 or | msec was used. A
total measurement time of 30 or 100 sec was used, pro-
viding ~2 X 104 statisticaily indzperndent samples for
2ach pair of histograms. It took about an hour to record
and analvze 2i! twentv-four pairs of histograms in a
complete filter series. The zecond factorial moment
m each histogram, and hence the ratio
und: the statiztical error of the vari-
s;ampies and photon

Wiy curmputed L
of variances w
ance due to the finite number »f
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noise was ~1-2%, The absolute values of the normal-
ized variance were 0.02-0.18. and the observations were
made at zenith angies <40°.

The results for the most consistent five nights of oo-
servations are summarized in columns +2)— 4} of Table
[. The values of the ratios of the variances predicted
by the —7/6 power law are shown in brackets at the top
of each column. and it is immediately ciear that the
measured ratios i, 03.4\; < \a) are significantly
smaiier than those predicied oy this power law. In this
sense. the results are consistent with those reported by
others.*’-'% However. aperture integration aiso leads
to smaller ratios: it should be stressed that spatial and
temporal integration was unavoidabie in this experi-
ment.

The amount of aperture integration was estimated
by measuring, in broadband light of mean effective
wavelength 485 nm from a star ni2ar the zenith. the ratio
of variances for apertures of diameter 27 and 5 mm and
44 and 5 mm. respactivelv. These ratios are tabulated
in columns (5) and 16). We assume that the 3-mm ap-
erture produces a negligible amount of aperture inte-
zration. The data in column (31, which empioved the
27-mm aperture used in the two wavelength measure-
ments. ciearly show that a significant amount of aper-
ture integration must have occurred. particularly on
night 4. Using these values and Fig. 2 we can estimate
the value of the aperture integration parameter D\ h-
for the 27-mm aperture that appears in Eq. 17) and
nence find the predicted -atios of variances for the dif-
ferent pairs of wavelengths. The values of the inte-
sration parameters are shown in coiumn (71 and the
predicted ratios are given in columns (3)-110% tAsan
asicde. it shouid be observed that the tive single
laver heights h; calculated from the estimated D« h;
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Temporai corre:ation riactions of steilar sanuilation mea-
sured over ten mgnis at Mauna Kea Observatury cobservations couid
not De made on 1 fiver. Some curves are snown as brosen iines
wor clanty. Time scales measurea atthe | @ puint range (rom 1.7 to
10 msec.

iie in the 2-3-km range and the effective values of p in
the power law are 0.6~0.9.)

Figure 3 shows a plot of the measured ratios of vari-
ances [columns 12y 4i of Table 1} against the predicted
ratios [columns 13i- 1], The broken line has a slope
of unity and represen:s agreement between theory and
experiment: the least squares straight line passing
through the data points has a slope of 0.35 £ 0.10.

The aara anaiyvsis descrived above iynored the effect
of temporal integration. The temporal correlation
‘unction consists of two main contributions. a boiling
somporent which iz nrovaniv wavelength independent
anG A rigid ransiation component «the so-cailed Tavior
hypothesis) which is waveiength dependent. since the
spatial correlation tunction is waveienzth dependent.
Thus. in general, we would expect both temporal and
spatial integration to produce measured.ratios ot vari-
ances that are less than those predicted on rhe hasis of
spatial integration alone: this trend is observed in Fig.
3. All factors considered. we conclude that the observed
nenavior with wavelength is consistent with Tatarski's
theory.

V. Temporal Correlation Functions

The temporai corrzlation function ot scintillation was
measured on =verv night of observation using the
27-mm diam aperture, zreen tilter '\ = 333 nm. A\ =
2 nmi and sample (smes ranging from .1 to 1.5 msec
depending on the correlation time scale. Representa-
tive correlation {unctions of the intensity tluctdation
for each night are shown in Figs. #tarand b, The i'v

Ciaot3RY Ly 10 Ne T MFSLED TPTCS 1028
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Fig. 5. Measurem of tne third. fourth. {ifth, and sixth moments

piutie” as a function of the measured normalized variance. Soiid iines

are tne predictions based on a foy normal distribution for steifar
seinuilation: set 11 set 2. 1O): see text.

correlation times vary between 1.7 and 10 msec. with an
average vaiue of ~3.5 msec. Whiie these values are
similar o the observations of others.”” thev are shorter
than correlation times recorded at another excellent
observing site (San Pedro Martir Observatory. Baja
Caiir.. Mexicor where values consistently around 10
msec were observed.

V. Normalized Moments of Scintillation

The theory of Tatarski predicts that the probability
density function of intensity of stellar scintiilation is log
normal tassuming that saturation has not been
reached). The normalized moments of this distribution
are given by

Some recent experimentai resuitzs bv Parrv aad
Walker* show that the measured moments of steilar
scintillation agree fairiv vail with hose of the log nor-
mali distribution for 57/ - £ )83, aithouzn the mea-
sured vaiues tend o he lower.

A detailed examination ot our data obtained during
this observing session rand at Mees Observatory, N.Y.
and San Pedro Martir Observatory) saows that the
measured moments are aiwavs tiv smailer than
those predicted by the log normai distribution. A
sample of these results is shown in Fig. 5 in which the
values of the third. fourth. rifth and sixth normalized
moments 'y = war arz plotted against the measured
normalized variance tie. uy ~ 1. The data used 1o
construct Fiz 3 comprised:

Set I, {1 2ighty-nine Hpseevations using 4 27-mm
diam aperture. ).3-1-msec integration, green tiiter *\
=553 nm. A\ = 3nm), and zenith angle <40°.

Set 2,10 thirty-seven observations using a 5-mm
or smoaller dinm_aperture, 0.5-1-msec integration.
broadhand lighr * = 185 nm. A\ = 200 nm), and zenith
anzie <20°.

oA P-T-Tr

[t i5 clear from Fig. 5 that the observed higher mo-
ments are consistentiv lower than those associated with
the log normai disiribution.  However. both sets of
measurements invoived some degree of integration over
space. time. or wavelength. and therefore it is possible
that the true probabiiity density funccion of scintillation
could be log normal. Finaily. it shouid be noted that
the lug normal distribution is not uniquely specified by
its moments.>* 50 that even if our measured moments
had been in agreement with those ot the log normai
distribution this would not have proved that the scin-
tillation was definiteiv log normal.

We are grateful to the Director of Mauna Kea Ob-
servatory. Hawaii. for providing observing time on the
81-cm telescope. This research was supported by the
Air Force Oftice ol Scientific Research under grant
AFOSR 31 0003 and aiso in part by the Rome Air De-
velopment Center Postdoctoral Program.
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Speckle statistics of doubly scattered light
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The statistical properties of light that has been scatzered twice are studied in theory.
Z1ves rise o Gaussian speckie. itis tound that the peoramlity densit
2 imply stronger

intensity are approsimately K

(JJuman terms. and. Jlthougn the correlauona are >pdluu_\ stationary. £

is not an ergodic process.

1. INTRODUCTION

Although classicai speckle theory has become well developed
‘n recent vears.'-~ little attention has been given to the effect
of multipie scattering of coherent licht. In the context of
speckie rheory, the only reievan: work has been that of Fried.”
though the correlation structure of doubly scattered light from
Brownian particle suspensions has been reported in theory*?
and experiment.’ [n the following we examine the effect of
scatzering a Gaussian speckle pattern from an opticaily rough
surface. [t is shown that the probability density of scattered
impiitude in the far fleid is not generally Gaussian in this case:
ratier. sironger amplitude and intensity tluctuations exist
znan in the (Gaussian case. Finally, the correlation properties
of doubly scattered light are discussed in Section 3.
si:ali consider the scattering situation shown in Fig. |
A sandsm complex-ampiitude process at$, 1) is incident upon
-he nard aperture of a scattering system. The light is then
scattered nv 1 diffuser and produces a ran~om compiex-
pritice process Arx. 1 in the ‘ar fieid of the aperture.
Throug:iout the anaivsis. “two imporzant assumptions wili be
mace. Our first assumption 1} is that the random ampiitude
215, 77 is a spatiaily stationary circular Gaussian amplitude
rocess. Hence 215, 7y may be zenerated by Gaussian scat-
ering irom a dirfuser. although the detaiis of this initiai
scattering experiment need not concern us here: rather atg,
7 will be assumed to be Gaussian a priort.  The other as-
sumption '2) is that. by itself. the secondary scattering ex-
periment of Fig. 1 gives rise to Gaussian speckle. That is. if
(£, 1 is viewed as a deterministic quantity, Arx. ) will be
~omplex cireular (Gaussian. The necessary conditions tor the
second issumption o be valid are well xnown :n speckie
~heurv.©  Most important to the present anaivsis are the
restrictions that the diffuser must introduce opticai-path
fluctuations greater than the wavelength ot light and thata
large number of independent scatterers contribute to the
amplitude at any given pownt in the far fieid. A theory anal-
ngnus to that presented below may be develoved it either atg
21 0¢ the secondarsy scatiering experiment tor hothy s non-
CLaUs 1A The (LSS1an-i rdUssiAn Sase o3 Orasented

Renprinted :

attering oy tself
ght amplitude and
The spatial-
contain non-
hev indicate that th 2 doubdiy scattered light

ies of the doubly scs

because Gaussian speckie is well understood and s easily
generated in the laboratory.

2. FIRST-ORDER STATISTICS OF THE
DOUBLY SCATTERED LIGHT

Qur efforrs will presentiy be directed towarc determining the
probability densities of the scatzered amplitude and intensity
in the far fleld.  Within an unessential factor, the scattered
amplitude in the far tield is given by®

an ir
Az, = J‘J_ ats.mal,m ex;\[— — i+ ym]d;‘dn,
~ {

(03]

nmain determined by the shape »f the scat-

2 function tht describes
n :nrough ine diffuser, 2 12 the distance to the far
i e wave number of the incident ! First.
consicer the case when ihe cor-exa.:on scale or spe zaor
: 2r than the aperture. Theampiizde 25,
7+ is then approximately constant over the domain of inte-
Zration so that

N [ i& 1.
4-\«.1-.;.»:;‘.Jf~:v,, |- = x§ + vydsdn,
o' “r’l - ]!~77

where @, is 3+3. m evaluated at the center of the aperture.
The integral remaining is simpiy ::e scattered amp'itude that
is due to a untformiy illuminated aperture. Becauase of as-
sumption +2). the scattered ampiitude is given bv the
product

ot is 2 random

where D is the d
apereur

12)

A= rd

wners 10 and 4 are hoth compiex sircular Gaussian v a
1bies.

Since 2. and A, are independent and ctreuiar. A is circuiar,
aithough we will now show that it is not Gaussian. The
moduii of 2, and 4, are Ravleigh distributed according to

o
-G, . .
A e _f,.x;,,_ Lt 4

a7
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zpeckie ampiituce process 315, m is scattered by a diffuser into the
far {ieid.

and
. TAn 2 -
Didn) = —expl='Ay -7, t3)
gal
where
= {an)
and
= {id4g°", 18}

The probabilizv density of | i =g, Ay is then given by

oM = ff‘p-;aq 16 A IHA = ani Ay idiasdiAn.

to)

where 3 ) is the Dirac delta function. After vne of the in-
tegrals is carried out. this becomes

=1 [ fx: .
—exp{- {—; 3
Jc T X a,-
which. with the substitution
el = el

may be written in the form

A = roa N Vo
suAN = f expl— coshue)) dr. il
" 7,

P

This tntegral s a renresentation of the 2esoti rder mod.
Bessel function of the second kind™ 30 that

+4 24
vA = —— R [—= h
. 3 (\3)

whnere we have detined J = 45 =7 27, Thus 4 1510t
Raviewgn distritbuted 1n the limat of large correiation scaie of
3o mu 50 the seattered light s not Gaussian in this case.
We now consider the density runction of 1ix. v wnen the
speckle size of 11&, n1 s comparable with of smatler than the
scattering aperture.  [n seneral this s g difficult problem.
ithough it vill ne made tractable by usinz in ntuve p-
aeoximation.  Spectiicaily. “ne compiex amontide a0 Z, oai]

ae 1ssumed "o be spatially nstant over INv ne ot 1 skt of

25712.-51zed JOMAINS in the <Caltering aperture, =acn domain
seind oI the urder uf 4 speckle size.  Moreover. the ampiituce
of each domain wiil be assumed to be 4 crreular G aussian
random variable statistically independent of rhe other do-
mams. as indivi® neckles of a Gaussian smbitude provess
ire oracticaily uncorreiated and hence indevenaent .o his

K. A.O'Dunreti

case. A similar discrete model of a Gaussian speckle pattern
has heen used to derive the approximate zamma variate turm.
if ~he integrated speckle intensity.” *

[a this case. the integrai vt Fq. (1! becomes

> ) [ S
A= © ;a'.ﬂ‘ siSoniexp|= = 1x$ = vm| d&dny.
sl 2 N ! I

12y

where 2. is the spatiaily constant compiex amplitude of a* 3,
m of the jth domain D, and \' is the number of domains
present within the scattering aperture. The integral in each
term is the random amplitude in the far field that is due to
uniform illumination on only a single domain D. of the dif-
fuser. As long as the domains are cunsiderably larger than
the ditfuser microstructure. the central-limit theorem may
he appiled as in Gaussian speckle theory. 30 that each integrai
in the sum represents a complex circular Gaussian amplitude.
We will aiso assume that integrals over different domains are
statisticaiiy independent, which is reasonabie for dirfusers of
much {iner scaie than D..

With these assumpticns. expression 112) describes a circular
random walk of .V independent steps that are. statisticaily
speaking, identical. Since the analysis has been restricted 2o
a hard or unshaded aperture. the .\ steps of expression 12},
which originate from different domains of the aperture. aii
have an identical mean length. Each step is the product of
two circular Gaussian random variables. so the probaoility
density of individuai step iengths obevs Eq. 1111, Thus we
have the purely mathematical problem of determining the
density funczion of a net amplitude A composed of NV such
steps.

While problems of this sort are orten difficult :0 handle
anaivticaily. Eq. 111’ belongs to a family of functions known
as K distributions that possess a remarkable property.
-Jakernan and Pusey have demonstrated that. when the step-
length distribution is one of the K distributions. the result of
a circular random walk leads to a A" distribution of hugher
order for the modulus of the resuitant vector.® Specifivaily,
the theorem of Jaxeman and Pusev may be used to show that.

if the step length is distributed according to Eq. 111, th
random wajk ot NV ; Hstrituted

LA = e vt |7 13
where

This result w1l not be proven here: the reader may consuit
Ret. D fordetaiis. Equation 131 is approximate for N > 1 only
hecause of the sormewhat nave mudei of the scattering process
1sed, uthough 't is exact for N = {, as {t'reduces o Ea.
A0

Egation 12 3as dso heen found to describe the statistics
of aingiy seattersd aon-Gaussian light. These A distributions
Afise (0 “heaty wnen speciai Modeis »f inaividual scatterers
are used? or when scatterer numner tluctuations are consid-
wredit i these elfects are neg'ected in the (Gaussian scattering
vxperiments discussed here. Rather. the A distributions arise
i ne present context because f the muitiplicative etffects of

doipnie seartening,
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Since A is circular. the probabiiity distribution of ampiitude
in the compiex plane mayv be written as

L ovAD
Nk

e
=030 3 R
where A. and A, denote the real and imaginary parts of A.
The cross section of this distribution is shown in Fig. 2 for
various values of .\ in comparison with a circular Gaussian
distribution. For N = 1l it is singular at the origin, whereas
“or N > 15 it is scarceiy different from a circular Gaussian.
This is of course Yecause any circular random walk becomes
Gaussian for deterministic .\ as v — =, regardless of the
properties of the incividual steps. n physical terms. if a large
number of speckles are present on the scattering aperture, the
scatiered amplitude statistics are neariy circular Gaussian.

It is aiso worth notinz that the assumption that each inte-
gral of the sum of 2xpression 112) is Gaussian will break down
as the speckie size becomes comparabie with the lateral size
of the surface microstructure. However, the scattered am-
piitude 4 will still become Gaussian if oniyv because of the
central-limit theorem. Hence the approach to Gaussian
statisiics as .V becomes large may be ditferent from that
precicted by Eq. t13). but this clearly depends on the value
of N necessary to lsad to non-Gaussian factors in the terms
of inequaiity 112).

The probability density of intensity / may be found easily
by transforming Eq. (13 with [ = A < with the result that

2047+ 4,
3
v

\

116)

[~ I m-N =
ey e 17
= NETON

and normalized variance
N2

— -l -

3 13
[.

The aistributions of Zg 19 auann Fig S tor several
vaiue- of V. Inthe vase N = 1 the normaiized moments 2o
as ' m - wiich imp < intensity fiuctuations. For large
vaiues orf V. the & distributions aporoach a negative 2xpo-
aential distribution.  This 1s tijustrated in Fig. 3 and mav aiso
be seen trom the normalized morments of Eq. ' [7) which ap-
proach the nezative »xponential moments of = for large
AN

The A distribution of intensity with NV = | has arisen in
reiated peoblems in the {iterature. £ried’ has tound rhat this
distridution applies to the statstics of ntensity when the eve
PP 1 SUMLAL iMAgIng sVATem noserves a Lidussiat apeciie Dat-
. etlectea from a rough sereen.  Aithougn it is pernaps not
v appreciated. it Ads Aiso Deen sAuwn that. ARen spataly
Conerent. quast-MoNOCNrOMaLc thermal aght s singly scat-
rered in 4 {;aussian manner. the intensity statistics vbey 1 A
stitbution with N = 1. as long as the resolution time ts much
less than the reciprocar of the optival bandwidth. ' The
anaton-counting Aistribution corresponding to this A dis-

VIGon s gl neen e Nese

ey
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Fig. 2. Cross secuons of the A distzthutions of doubiv scattered
compiex ampiiiude rom Eq. 131 Curves ace sflown for varivus
vaiues of the N parameter in cumpanson w1tk a crcunar Gaussian
distribution. which 1s tae limitof the A disiributionsas N — = A}l
curves are rotationally svmmetnic in the compiex plane.
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Fig. 3. Probabiuty d=nsities of the duubiy seaitefed intensity from
Ea. +15) for vanous values of the v parame.er. A negative-2xpo-
aenlial aisiribution s snekn e comparison.

references. as in our inaivsis. the A distribution anses because
-he intensity is the squared moduius of two independent cir-
cular Gaussian factors.

Althouzh the N parameter has been regarded as the number
of eoerelation cells of 212, ny present within the scattering
aperture, the precise manner in wiich .\ may he calcuiated
for given scattering parameters has been intentionally ne-
zlected thus tar. Particulariv since the probability distri-
butions have been approximate tor N > 1. une is left with
suMewn 1t ol an 2coitrary dectsiwn in the choice of N. We
nostulate here that N mav he chosen most sensibiv by
matcmng the varance of the A distnibhution or £q. - 16 ro the
Axaer intensity variance. This s simiiar to the method of
Monsing The C anance parameter of Jhe Lunma vartate 1p-
proximation of <patiatis :ntegrated specsie iNtensity.  An
»xacy expression for the (ntensity variance may be deduced
from the resuits of Section J as a speciai case of the exact in-
tensity correlation ftunction. Ths wiil not zeneraliy lead to
integer N, <o that our innurive ranadom-w.rk moded joes not

. o— e =
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3. CORRELATION STRUCTURE OF THE
DOUBLY SCATTERED LIGHT

e mow o turn oz 3tienfion To The spatid.-correiation proper-
“e~ ot e 10adiv scattered smolituds and intensity in the far
Seid. The approacn taken wiil be first o consider g0 &, 1 as
: leterminusiic quaniny. n wirch case Irom 2ssumption +2)
the correlation resuits are those of conventional (Gaussian
:peckie theory. Then a1, 7 wili be ailowed to become ran-
dom. and the ir':c ensembie average wiil be obtained by av-
eraxing ver the aussian statstcs of @&, 7+, In addition,
*he nard scattering aperture. which was necessary ‘or identical
mean step lengths of the random waik of Section 2. w1l now
Je repidced Dv a more fenerai pupil function P&, m, which
may include ampiitude modutation.

Fora ziven realization of 2+ £, 71, the results of conventional
:peckie theory have snown tnat the correlation funct:on of
‘ar-fieid amplitude A(x. 3 ) is ziven byt~

A%tx odx = Ay + Avrae, g

= pir ff PrE omifars. g’

xexp[-lj,‘.'.\x:'-"' Ay dédn. (1D

P4

where
s \ .
AE ST AT A - 2x e £ 20 AN 20

Q.at$, m - denotes the ensemble average ol @ for a ziven re-
alization of @1 &. 71, and an unessential scaling factor has been
ignored. Also. with at$. n fixed. the Gaussian factorization
thevrem hoids. s0 that the correlation of far-fieid intensity is
given by

Doyl = Az oy 4+ Asransoe
= ! f- P& niTat, ql*%fdn’-

| am
-I'JJ PieniTac, it

‘R ! 2
X exp[— =1Axd+ Avni dS'jnl .o

L - i H
These resuits are valid in the paraxial regton where the en-
veluope of the speckle pattern is nearlv constant. Another
important assumption in deriving Egs. 119) and 1211 is that
che dirfuser surtace has much finer structure than at&. 71 or
Pié.m. This inetfect sets a lower limit on the speckle size of

a1 7+ for which the theory to be presented is vaiid.
These resuits may now be averaged over the random tunc-

tion @t & mr. From Eq.119) we obtain

A%x. e 2 Ax s+ A

,
(AVE S Anmeldsdn, 2
I

where - (- denotes 'a1&, mi-'. @ denutes the average of 7
over the entire ensemble. and we have used the fact that a1 &,
71 is spatially stationary. This result 1s indepencent ot v and
©and is rather stmuiar "o rhe Gaussian speckis sesuit. Howe

K. A. O Donne:!

ever. in averazing Eq. (211 over tne statistics of a13. 7.
fuurth-order ampiitude moments of g1 S, 71 are encountered.
which may be simpiified with the Gaussian facturization
theorem as

Coté =S on=nr=ig=.niaré.m 124,

A small amount of alzebra then vieids the spatial intensity
correlation as

Jxoatie = Ax v = Avre =0 (s ff Pig. nyididm :

; . i 1
+{/¢. -U PLg, ryn-‘exp[-fdxs-»A,\nvidfdnl
i - 2

: [ iz o N
x 1 +exp1—--—!_\x':—: c+ A =0 }
t H 1]
X d&éd&dndn. 125
Azain the resuit is independent of the x and  variables. al-
rhougn it is apparent hat Eas. +231 and '22) are not reiated
by the Gaussian-moment theorem.  We define the normaiized
intensity correlation as
e R S S R
NAx, vy = . - - B
1 y -
The quantity ‘[ mayv be found from Eq. 122 with Mx = Ay
=1). Afterintroducing sum cnd ditference coordinates in the
last inzegrai of Eq. 1250, there results

Mdx. s = i’ _U'_’ Picp?
.

2
2l A 7;"! dfdﬂl

v = Sxde ldimepaddn '
H < 1)
‘where
e
r«s.:n=_U e =i - -
n. 21.-dsdn’. iy}
]f Piiqedidn, 1291
and
-_;"7«=1 o ™"

12 the Ganssan conmibution T the
Ntensily corre: Nhereds The other term represents
non-Gaussian =tfects,

[t is instructive to consider the intensity correlation in two
limiting cases.  First. when the speckle s1ze of g1, 9¢ 1s much
greater than tae scatienny aperture stze. * o5 1 = Uawithin
noFa 2T and

She domam of intesration, nsert:
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making use of the antucoerelation theorem. we obtain

ST

X e‘(p]- TrAxI+ Ay LA d‘an- -1 3b

This normalized correlation starts at the value 3 when Ax =
Ay = 0uwhich is the same as the normalized variance of the
A distribution wnen N = | and then decavs to unity for large
Ax or Ay, Correlations never die out; hence /1x. v1 is spatially
stationary aithough :patially nonergodic. Physicaily. when
rne speckle size ts much greater than the scattering aperture
size. the intensity in the aperture is spatiaily constant. ai-
though this constant varies over the ensemble with a nega-
tive-exponential probabiiity distribution. Moreover, the
mean intensity in the far field is proportionai to the intensity
present 'n the scattering aperture. Eguation 1211 is therefure
tne intenstly correlation of a Gaussian speckle pattern whose
me:an INtensity varies as a negative-2xpor:ntial variadle vver
the ensemble. Thus it is not surprising that a coereiation
:5 between widely separated points.

When %18 ™ 13 consideraniv nartower than the scattering
pupil. from Eq. 127) we have

5

2X

Axd+ A m! d‘—dvf

T e L ik !
-TJJ‘ mat&onedexpl= = Ax$ + Avmf dédn
- < J

NS . .

H . ) ~ 5 . .
-T—'gi‘ji <o e D)

Ir gadition to the Gaussian term. the second term represents
e contribution of the fine structure in @ I, 0 %o the ptensity
struacture in the far feld. The last term of expression 1321 is
an energy-conservation term That ranresents nower Tlictua-
tions in the scattered light as a whole, arizes {or similar
se3s00s A8 the cunst . dthough
rhe nonerzodic ef

F L
parameter ol tne A AStRGULED D ne manner disvusied
Section 2. Comparing Eq. 27 with Ay = 3 = o
presston for ine nurmalized variance f Eg. o
wrargartorward fo snow that

g e

The expression tor N~ may indeed he shown to be egual to
ne normaaizea variance of Goissian speckle intensity that has
neen intezrated over the scattering aperture.s” The nor-
~utizeu v arlanee of Eg.o 131 may then be thought of 1 having
the Guaussian speckle contribution of nmey
o acdilion 1o g term na( represents Cuctuations in ine ner
noser of Tne scattered lgnt.

CI3 are nuw consideras

o

Somr-didn, [N

Ao ooninnutions:

4. SUMMARY

- atatistical properties of coherent iizht rhat has heen
Ter ot TWICE MAVE Desnt i ostizated I thenry, [t has heen

Vol T2 Nu L Novembper 1992 . Opt. Soe. Am. 1467

h individual scatteninz gives rise 1o Gaussian
e propabniiity der hat lescribe the
Toudly seatte tare 1pproxima ributions. [n
Jenerai, the K ributions predict argzer ampiituce and in-
tensity 1luctuations than arise in Gaussian speckie. The
spatidl intensity correlation of the doutiv scattered ligi
consists of @ Gaussian term tn addition to terms that represent
non-Gagssian effects. Although the intens:yv correlations
are statistically stationary. thev do not die out {or large spatai
separalivns: nence the doudiv scattered light 1s not spatiaily

shown that. if eac
speckle by |

sivation of the K distribution of doubly scatiered
light ampiitude has not been rigorous. as it has made use of
a rather idealized mode! of a Gaussian speckie patiern.
However, 'we belizve that a better theory wouic be consider-
ably more difticult than the intuitive theory presented here.
It 15 expected tnat the A distribution approximates the exact
probability disicibution of doubly scattered light [n the same
sense that the gamma variate approsimate
Gaussian :peck.2 intensity. since similar idea
made in both cases.  Nevertheless. *he uitimate test of vaidity
of the theory presented, as 31\‘3)34 woud be throuz
parison with experiment.
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REF. 6

Correlation properties of light produced by quasi-thermal
sources

T. Gonsiorowski and |. C. Dainty~

Racuived ALy

[t 15 wetl known tnat narrow-2ana therma; light can be simuiated hy moving a 2rouna
15 Letter, we snow tnat. wien Gime integration of intensity o

beam 1a so-cailea quasi-inermai sourcer. In

e spatial curreiation of integrated NNV ITOM a yuas.-therma source doues not

z2neral. benave as it would

iur a rea: thermai source. [n particuiar, time mtegration can :ncrease “he spatial conerence area.

1. INTRODUCTION

Srtortiy arter the :nveation of the laser. Martienssen and
Spilier: described a quasi-thermal source with an adjustabie
and 1 sec. This suurce consists
5uch as a ground-giass oiate. ii-
At 2.z 3 iaser beam. The rieid
ced b_\ this source Ras circuiar compiex Gaussian sta-
nslics. provided that certain resirictions are met. The
spatial corerence properties of the scattered fieid are governed
ov tne Van Cittert-Zernike theorem.** and the temporal
ies are governed DV the transit time of the diffuser
ne laser beam and by a Doppier-shif® term for non-
noima angies of onserv anon ?
.

coreEpt of quaw homogeneous sourc and aiso in studies
conerence of radiation scattered by gratings covered by
ser.’s 7% Thers 1= 4 cluse correspondence between
and cohercnce £5.24 and the theory ui time-
13 particariy reievant 1o a studyv of this

s Letter we »nuW 1adt certam spatiolemboran statistics
at produced by quasi-therma sources are quite dgil-
ferent Tom these of real thermai sources. such as a primare
‘nconerent source or spectrally tiltered blackbody radiation.
Ths durference resuits from the deterministic motion of the
diffuser. which generaliy produces an ampiitude space-time
sross-correlation function that is nut reducible to a product
of temporal and spauai correiations. We illustrate this dir-
ference bv showiny that the normaiized spatiai correlation
function of time integrated intensity ncreases in width as the
integration time ncreases.  [f the tatensity distribution across
*he quasi-thermai source . Gaussian e.z.. direct laser i{lu-
miraitzn. then the space-iime cross L.)rre.mon s reducible:
sase. the quasi-thermal source and i rie chermai
urce 1o have the same space-rime Dehavior Hul [of Quite
fifferent reasons.

2. GENERAL THEORY

A

wave 1see Fig. 11, The area iiluminated is controlled by an
aperture <&, 7 such that this area (s much larger than the

correlition area of “ae diffuser surface but suil surficientiy
small to ruitill the Fraunholer concdirion at the nhservaiion
tance : from the source.

constrained o move trar

pilane. ad
It the diftuser erselv to the
optical axis. then for smali field anzies Doppler effects can he
'\'r\ored 1nd since the tin:e variations introduced by the cii:"-
fuser are much sfower than the naturai fuctuations ot th
i gn' the complax ampiitude aivne provides an adequate de-
scription of the optical fleld  Assuming thart the diffuser is
rough compared with the (lumination waveiength. then the
phase of the scattered wave wiil be uniformiyv distributed
hetw2en —7 and . and. since the aperzure was chosen toen-
compass many correlation areas. a large number of scattering
centers will contribute to the {leld at each observation point.
Under these corditions. the compiex ampiizuce in the far tield
will obey cireuiar comolex Gaussian statistics.” which may
he Tully described by the space-time ampiiude varrelation

A s o = Axono- Aot - A
wnere denoies an ensembie average. i3 assumed here
that the optical tieid is wide-sense stationary in time and

range 5o ob

(]ud:l stalivialy th 2 JdCe. that 5. uvera o
SerVation points (x5 ), soverned by the corteiation properties
ol the diftuser. the space-time amptitude ~orrelation is in-
duependent of x and . We will aiso he 1nterested in the
space-time intensity cross correlation
Alvro v 00 = Aoy = A= Ay

= Am v AT Ar sy = A= At oy

where M =/~ [ and

I = A=~x . oda o ]

Now jet us relarg these sorreiations to tne saustics f the
diffuser. We assume that the coordinate svatem 15 chosen so
that the ditfuser motion 1s purely along the & axis. with velocity
v, Ifthe ﬂ.dt.e'ed Jmpm ade immediarely atter the diffuser
At Gine ¢ then at time « 1wl be gt = ot 7.
Since the anservation plune i~ 1 the Fraunnorer regima. the
SEDEX N '
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- 1 sr=T 2 pr=e=T2

AR =—J J Nz A
T . - . - -

Y i =T tee=T 2

-:deds T
®

APERTURE
LECP Y

"\ MOVING
DISFUSER

A guasi-thermal source is produced by riluminating o diffuser
Mmoving nenind an aperture.

A o

=‘\—exp[1k[:3+lev-_*.-‘\r?]/:}Jf arl = vion

X A& phexp{—itkixE ~ v 2ldldn. o
where \ is the wavelength and # is the wave number of the
light: the ampiitude cross correiation loilows directly. As.
surning that the diffuser is fineiy and uniformly zround. we
may expect ar$, 7/ 1o De a statisticailv stationary deita-cor-
reiated process: that is. it a correiation function that de-
pends only on coordinate differences and that can be modeied
by a Dirac delta function. This assumption can he shown:™*~
10 resulit in a normalized space-time intensity correiation of
the form

(A v, A (x + Ax, 2 + Av = A

2

L et ) e
AL Gl Bl el

. . !
Xexpl—iR(Axg = A ziddn| -+ 4

|

t

AAx Ay, An =

This can pe simplified t0 a single integrai*

Ntdr Ao =%J‘-‘r

Together Egs. (4) and (3) express the time-averaged in-
tensity correlation for spatial separations Ax and Jy atalag
time r {rom an aperture .~i§, 7! normally illuminated by a
monochromatic plane wave of wave number & and {illed by
a tine diffuser that is rigidly translating with veiocity ¢ in the
+Z direction. Eauation 18 shows that time intezration er-
fectiveiv convolves the instantanenus correiation with 2
blurring function that increases the temporai wdth.  Further.
if the instantaneous intensity correlation is not reducibie ti.e..
dues not 1actor into the product of space and time functions’.
then time integration can also affect the spatiai extent of the
correiation.

3. APPLICATION TO A RECTANGULAR
APERTURE

T. demonstrate this phenomenon. consider a rectanguiar
aperture

SeSom = recuSoadrectn by, 19)

€ standard rectangie function of width 1.
From a simoie geometrical anaivsts one may show that

where recuex

- \

R = T recun by foritAri<e

otherwise.

wnere

A _
i S = )f g nl]-ﬂ:-:m. 1D

Hence the

raneuus intensity <ross correiation is

NAx v Ao =)

anlol = A anrzdx Ao s 7ol Anf?
!

tor frdifa <1

T e vk
« 0 LACUUGe The

-averigsq (ntansiv

e, 1]

C snere T s the integratio oo m.we and the bar denctes a time-
v meraged quantiy, Sowes s agedendent sf time, appiving
T Tt o ce
H

six \: T340\ R
. . il
otherwise. .
3,
P .
s = J o lrecud replrectm tidi- = a0
'
'
je1

e et ———— ey LA ¢
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size. leads to the relation

Nxe, v, 70

[sin el = i A aix, sin 7,

forivdiia <1

[
)
e

otherwise.

[}
<

4

Note the space-time coupling that prevents factoring \ix,.
.. 7)into separate space and time functions. Appiving Eq.
8) vields

an

< {ﬁn'l - 1L'At\,a).7x\.}~dx. 15
wx,

‘wnere

A, = maxir -] Lo, Ais=minir = Toa )

To simolir;
that measures the re.ativ

3= oTa (B

this expression. ‘et us introduce a parameter 3
tive amount of time integration:

<

)

Als0. since the upiing arfects uniy the x. com-
ponent of tne ler us consider oniy separations
aiong this direction vie. zet .. = O Finaily, by choosing a
new variabie of 'ntegration : = A: T we obtain

- - ; N fsimel = 2ehEage
INERD) ,-.=) 5“_":_:1\ i i Faer
o i Ik XL !
(1T
wnere
roEmaxt -t T -t - -10 . coEmuner T L LD

Equation ' 17y can he snived snaivtically or numericailv 1o
v correlation for different
»n has two cant etfects:
e spatiai Droadening of the

me.avargged |

™1

on s fiven

Sa.ue ol lne CorE

[RIYIR NIRRT R 17 ede’o 1R

where oo and :_are ;iven in Eq 1750 As iz shown in Fig. 2,

:ncreasing J reduces tne variance. This reduction of the
varianee (mpiles that the 1ar fieid becomes more incoherent
with increased “ime averazing. This erfect is weil known and
nZact 13 used to reduce speckie tn conerent maginz svs-
tems. V-d

The secong 2

BRI ENTe MW oThe <patidl orte
43 TENOrMALZe e LMe- el
cminate the cnanzing w3

Torsnow Tais most el

Crregnen T

ETRNT e
. . Ihe tenormalized cotretation \cx, o 7
pitted tor taree v ies ot 3 The case 3 = 0 corresponds to
TV AMOUNt of time averaging or.
intaneous infensity correiaton of

reas T E D ana So= IO ianow taal

) satwonary i
More imnoranty o

YA L

—_— - M L

4
-

62

U

A

=

ctters

—

=~ = T —
o

1.5 ?

¢ . Time-averazed spatiai intensity correlation of a quasi-
shermai source Wi A tectanguiar aperture. The cyrves are for <ar-

S 2MOUniE of fime nt

atnn, =005 100,

‘where 7 represents the waist size of the beam. Foilowing an

anavsts stmilar L
SANeous intens:

hat of Section 2. one obtains the instan-

1rass correlation

Xt exp =L AL ]

—.——
—— et
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me-averaged correlation. However, tus
special properties of the exdonential funen:
retlect nera: NAtUre o1 JUasi-iNerma, sourcss

5. DISCUSSION

The benavior of spatial correlation function of time-:
rated intensity from a yuasi-thermai source. descrided in
Section 3. i3 quite different [rom At of a true thermai source.
L znt propagated from 4 thermai source. such a3 4 spectraily
rlitered biackbody with the same ntensity at all pointson the

source. aiways retains the reducibriity prop then .t remains
33-3DeCtraly pures. provided that a certain path restriction
iz npeved.”! Thus the shape of the spatia; intensity correia-
sion s unattected by time averaging.

The effect of time integration on the spatiai corre:ation was
studied because of its relevance to the original 2xperiments
o Hanbury Brown and Twiss n intensity interteromerry.
[r those experiments. the time sveraging was unavoicanle. and
1t was assumed that the space-time conrerence function was
reducib.2; tn effect. it was assumed that the spectrat inteasity
3cross ine stellar source was constant.  Urnder this condition
of reducibility, the shape of the spatial correlation runction
was unaffected by time integration. anc the usual Van Cit-
cert-Zernixe relationship could be used 1o estimate he an-
2iar dlameter of the source. As we shuwed tn Section 3 and
in Fig. 3. similar experiments using a quasi-thermai source
would iead to erroneous estimates of the diameter,

The analysis of Section 5 aisy tlustrates the difference he-
tween finite averages over time and over an ensemble. For
example. were the diffuser to move in stepwise fashion during
the time integration. and it each step presented a compieteiv
aew section of the diffuser to the illumiration region. then the
atial correiation of int ted intensity wou.d retain a
stanf shape: that is. a finite ensemble average does not
vieid the same resuit as a linite time average with uniform
iZfuser motion.~ Of course. in the generui case. we should

WL Tme s nledtated
0DVINUS that trere
fation function when

1 T on the tlemporai corr
:nalias integration vecurs.
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Enforcing irreducibility for phase retrieval in two dimensions

M. AL Fiddy
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Unique phase recovery from a singie two-dimensionai intensity data set devends on the comolex function’s being

represented by a ziobaliy

[n one dimension. it is welli xnown that the extent or *
the ambiguity of phase runctions that can be associated
with an observed modulus distribution tscattering data.
image data. or a coherence tunctioni is expressed by the
distribution of complex zeros of the associated analyvtic
function. Unique phase recovery is ensured through
zero location, for example. by using a second intensity
or grior knowledge abour the object. or by the guarantee
of a zero-free half-piane. fur example. through the ad-
dition of a reference wase.:

In two dimensions. the ieid before detection is again
analvtic. and the phase ambiguity can be expressed by
the numoer ot non-seit-conjugate irreducible tactors in
the Osgood product.”

\
= ] [Farzie 7= N € o, =4z, 20,

=]

F

where £z are globeliv irreducibie ractors. ¢ are
convergence factors. .. are polynomials. and [, are
integers. [t has been shown that the set of polvnemial
tunctions of two variables and given degree is a set of
measure zero': thus one is tempted to assume that in
general £iz) will be irreductble. i.e.. that N = 1. [fthis
is the case. then a phase unique to within trivial tactors
can be associated with the ohservabie | Flx . x|~

However. one cannot assume that Fiz) is alwavs ir-
reducibie. or that reducibie Fiz) are unimportant.* as
has heen demonstrated.?°

[t shouid be noted that the zerns of F'z 1 are lines in
2. 240 space and thus 2xtend throughout that space.
The use of <he Hiibert transiorm to attempt to construct
>z from iog) Feay) will resuit in a function that., in
Zenerai. is not even anaivtic. in distinction from the
one-dimensional case.” Real and conjugate symmetric
iactors can occur that do not contribute to the phase
ambiguity. and for simplv shaped apertures and sup-
DOFL ane mizZht 2xpect “he asvmptotic zeros to retlect

CMesp JLapes GV §redneihie Tanetion.

Henein:
tnmront L I N S S LETY

rreduc:bie entire function. Functions of two complex variaoles. &

m Uptics Letiers,

eneral. are likely to

be irreducibie. bul nu conditions have Deen stated to ensure this except {or objects consistung of specilic arravs of
points. A condition based on Eisenstein’s criterion {or irreducibiiity is ziven here that requires two reterence
puints in the vbiect piane.

Phase-Retrieval Methods in Two Dimensions

[n practice. we have data not on continuous variables
but only a finite number of discrete samples. Only with
an infinite number of samples can 2 unique represen-
tation of F1z) be found; with a finite number of data
points an infinite ambiguity is possible unless some
estimate tor Fiz) is selected on the basis of prior
knowledge or a chosen model.8

Phase-recovery algorithms considered to date include
the two-defocus method and those of Gerchberg and
Saxton and Fienup. The uniqueness of the first two
methods, which require two sets of modulus data, has
heen discussed.® In practice. witl sampled data, con-
vergence to the unique solution. if the wethods converge
at all. is not guaranteed. Fienup's method requires only
one modulus data zet and. ideally. kxnowledge of the
object support.*”  Oniyv for a nonredundant point-array
object can one easily deduce the object support trom the
autocorrelation support. and in this special case one can
also directly determine the point amplitudes!t; exam-
ples of nonredundant arrays have bheen ziven by
Golay.!*

We consider here the case tor which onlv one modulus
data set is availabie. The iterative techniques listed
apbove. and hybrid versions of them. have heen com-
pared in detail.!” but for their convergence ratier than
for possible unmiqueness. However. uniqueness of phase
is guaranteed :f we adopt a model {or the object based
on the Fourier rranstorm’s heing an irreducible poiy -
aomiai of degree determined by the number of data
points. '

Irreducibie Polynomials
A polvnomial ot total degree N in two variables will

require .\ = 14N = 202 seefficients and thus this
number of 1072 pogts o tenresent cromignely, 1 we

Laosopase e Ferp e o
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have N7 data points. then we may assume that the
maximum degree in each variable is NV — 1; thus the V*
coefficients that are associated with this polynomial.
We wish to ensure irreducibility of this polvnomial.
The example given by Bruck and Sodin-* in which a
reference point is placed to one side of a one-dimen-
sional object array of points ensures irreducibility but
is of limited interest.

if the object support is not known. then the simplest
step is to assume a constraint for irreducibility outside
a simply shaped region within which the object is known
to be contined. [f the object support is known. a more
appropriate and specitic constraint can be introduced.
and. in addition. it may be possible to model the object
by a polynomial of higher degree and thus achieve
higher resolution. The following is a sutficient condi-
tion for irreducibility of Fizy, 21), 2 complex.

Eisenstein’s Criterion.'5 Consider F(z;, z5) as a
polynomial in =y, Le.,

Flzy,22) = aplz2) + ay(za)zy . . av—qlzyz VL

Thus the coetficients are polvnomials in z». If there
eXists a prime tirreducible) factor p(z5), which divides
am@y...ay-2butnotayx-,,andif p?

2(z2) does not di-
vide a., then Fiz|, z.) is irreducible. In C the only
prime is of the form z, + b, where b is complex.
Consider the general form of a polynomial in two
variables having maximum powers -/ and K in zy and

. J K . .
Flz\ 220 = & ¥ fij. kizyzah
)

The coetficients of the polvnomial are samples of the
object.’* We can construct an irreducible polynomial
in, for example. the following way. Assume that the
region containing the object support is a rectangle de-
finedbv0<; <J —land1 <& K. Asingle reference
point at {-J. O ensures irreducibility. provided that the
point at t0. 1) is nonzero. The simpiest prime. 2., di-
vices all coetficients except that of the 2/ term. 2nd z2,°
does not divide the 2,7 coefficient.

Figure 1 shows the locatizn of the reference points A
and B at /.01 and (0. 1), respectively. PointsAand B
snouid he nonzero. Clearly, if the nbiect support is
snown. it may be pussibie in special cases to choose a

Fig. I.  Suftficient conditions for a two-dimensional array to
be irreducible are satistied when the object is contained within
the shaded support and points A and B are nonzern.

Vo3 N 2
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Fig.2. Thetest object 1a)is a4 X Hd element array with the
magnitude of the brightest point normalized to one and point
B of Fig. 1 arbitrarily set to one. The tesult, after 230 itera-
tions. of applying the Fienup aigorithm directly to the Fourier
modulus and support of fat is shown in (bi. Although certain
general features are recognizatie. the image has a noisy ap-
pearance. whicn is only slightly reduced by continued itera-
tion. Including point A of Fig. 1 ensures a unique solution,
and the Fienup aigorithm converges rapidly. Pictures (¢) and
td) show the resuits arter 20 iterations for A = 10 and A = 10,
respectively.

DOINT ON 1t perimetel 13 B ana then select an optimum
location tor A chosen hv rotating the support and
redefining the axes: irreducibiiity is maintained under
any linear transformation.

The reference {unction introduced can be arbitrarily
close to the object support, provided that the Eisenstein
criterion is satistied. The method ha.. similarities to
off-axis holography. a holographic reconstruction failing
because of the overlap of the autocorrelation and
cross-correlation terms. The object support may be
such that this is naturaily satisfied.

Implementation of Phase-Retrieval Methods on
Irreducible Polynomials

Having shown that our object model generates an irre-
ducible polynomial of degree compatible with the
number of data points available, we still have to find a
way of recovering the unique phase from the modulus
data. Tt has vet to be proved that. when oniv one pos.
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sible phase function exists. the Fienup algorithm. if it
converzes. does converge to the correct phase. Never-
theiess. we have compared vbiect reconstructions ov
using this aigorithm with and without the reference
points of A and B. These are illustrated in Fig. 2. The
results are encouraging. showing a rapid convergence
with the reference points when there is no sign of con-
vergence to the correct solution without them. The
computer simulations indicate that, when a uaique
phase exists. there is no advantage in imposing the
positivity constraint (when relevant) other than to
speed up the rate of convergence.

Conclusions

It has been argued that. despite the likelihood of irre-
ducibility tor tunctions ot more than one variable. the
iack ol consistent success of phase-retrievai algorithms
suggests that irreducibility should he guaranteed be-
torehand. In addition. because of the inevitable limi-
tation of discrete data. a model is adopted of a finite-
degree irreducible polynomial consistent with the
available data. The Eisenstein criterion provides one
particular sufficient condition for irreducibility; nec-
essary conditions do not appear to exist. but other suf-
ficient conditions may‘exist.

Having imposed the irreducibility criterion by adding
nonzero reference points to the object. we found that the
Fienup algorithm quickly converzed to the correct
missing phase. This therefore offers a possible means
for analyzing the Fienup method to determine necessarv
conditions for its unique convergence. An analysis in
terms of alternating orthogonal projections onto the
boundaries of convex sets!® suggests that. without ad-

_;,,*44#,__.‘;_‘

ditional constraints. Feinup’s algorithm could reach ail
solu(inns that are band limited and have a given mod-

ulus: thus. if the number of solutions i1s guaranteed 10
be one. \he method wiil work.

This work was supported by the U.S. Air Force Otfice
ot Scientific Research under grant AFOSR 31 0003.
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Detection of gratings hidden by diffusers using
photon-correlation techniques

] C. Dainty and D. Newman

Department of Physics and Astronomyv., LU'niversiy of Rochester, Rochester. New Yors 14627

Received August 16. 1983

Photon-correiation experiments have verified the theoreticai prediction of Baltes ¢z a: :hat a pnase graune nidden
by a diffuser can be detected by correlation measurements. We have additionaily demonstrated that a simpier
method of detecting the presence of the grating, vaiid for aroicrarily fine diffusers, is to measure the temporai auto-
correlation of the intensity of the scattered field at a single point.

In a series of recent theoretical papers.t-i0 Baltes and
co-workers have shown that the presence of a phase
grating placed behind a diffuser can be detected by
correlation (coherence) measurements of the scattered
radiation. even when a simple intensity measurement
does not reveal the grating.

In this Letter., we present measurements of the
strengths of the correlation peaks as a function of the
diffuser and grating parameters obtained using pho-
ton-correlation techniques; our results confirm Baltes’s
theory.}-8 We also report measuremeats of temporal-
correlation functions in which the presence of the
grating manifests itself as a cosinusoidal modulation.

Measurements are made in the far tield of the grat-
ing—diffuser plane (see Fig. 1). In the absence of the
grating, the diffuser alcne would give a broad diffraction

cloud of width inverselv proportional to the correlation -

length L: the sinusoidal phase grating in the absence of
the diffuser would give a series of diffraction orders with
an angular separation inverselv proportional to the
grating pericd h. With both grating and diffuser
present. the diffraction pattern consists of a series of
cohererntly supernosed diffraction clouds centered at
each diffraction order of the grating. as shown in Figs.
iand 2. Iftheratio L bissmalienougn L 5 <.
then the average intensity distribution does not reveal
the presence of the grating, as shown in Fig. 2(¢c).
Using one-dimensional notation, we model the com-
plex amplitude in the scattering plane as the product

UlE) = PtE)e> 81T, h
where Pt$) is a real pupil function. »1$) is the random

phase that is due to the diffuser. and T(¢) is the trans-
mission function vl the phase grating. In our case.

ah

P(g) = [)1 2expi—52/4a ). 12)
where a is the beam width, and
T(E) = expli ww sim278 b1], )

where « is the optical depth and b is the period of the
grating. [nourexperiments, a = 0.33 mm, « = 0.833. and
b =5.1and 9.2 um.

The diffusers were made in photoresist by muitiple
exposure to Gaussian speckle patterns‘i:%: this pro-
dauces 4 surface heirht with a fhaussian prebability
Slstribution of standard feviation 5. and a Gaussian

HE46-9392, 83, T2080s-033 Lo

e e 2

correlation function of parameter equal to {n. If 75 2
\. it can be shown that the correlation function of the
complex ampiituce transmittance of the diffuser is also
approximately Gaussian. with width equal to L (Ref.
13)

(expli{oi&) — ol&]h = expt—=1&; — 5422LD), (4)

where
2zin = l)g,
4 )
\ is the wavelength (633 nm). and n is the refractive
index of the photoresist 1=1.67). In our experiments,
L =13.2533,64,7.1,and 10.3 um.

For computational simplicity we expand the grating
transmission T(&) in a discrete Fourier series:

L=l 13)

Tig) = espli asine27& b))

i
e

gnexpli2zngib). (6)
Riza

where ¢, = J,a’, the Bessel function of the first kind
of order n and argument a.

The correlation [ixy, x1) of the complex amplitude
in the far field is given dyv. ignoringz the unimporant
phase-factor and scaling constants.

P = [ 77 gt

X exp ["5 ;_R x1§ = -V:E:" d§idsy, D)

t
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Fie 1. Experimental arranzement.
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fraction ordsrs. The angular width of the correlation
peaks is equal to tka)~*, ur a speckle diameter: note that
these peaks are usually very narrow compared with the
intensity peaks. (ka1 << RL)H70

Measurements of the peaks of the normalized in-
tensity cross-correiation were made for the antisvm-
metric scan 1%, = \, b). using standard photon-corre-
lation equipment described eisewhere.’¢ The diffuser

Inamiey

= was rigidly transiated across the illuminated region. and
. - N the spatial correiation at the two angies was estimated
i L from measurements of the emporal cross-correiation
o at zero time lag. The anguiar width of the correiation
al ® o peaks does equal (kg +=%. as found 'approximateiv) by
o B Jauch and Baltes®: these resuits are not repeated here
sm—— e Fig. 2. Theoretical average auch and baltes res > not rep D
B Y e P ) . The experimental values of the peak of the normalized
s intensity in the far field or . T T T e

phase grating—diffuser com- intensity cro: -correlation are plotted in Fxg. 3 foreight
s binations: ta)L.b = 1.0, (b, different values uf the ratio Lib. where L is the corre-
L A L:d = 0.30. and 1¢) L. = lation length of the compiex amplitude transmission of
FPY ’ 0.33. tL is the 1/e correia- the diffuser and o is the grating period; the theoretical

LI S tion length of the complex curve [Bgs. 191-111)] is also plotted in Fig. 3. )
o @ 7 ) amplitude transmittance of The agreement between theory and experiment in
o G \ the diffuser and & is the pe- Fig. 3 is excellent. It should be noted that. for values
12 ey, fiod of the sinusoidai phase of L:5 < 0.33. the average intensity distribution as
-t o grating). shown in Fig. 2 does not reveal the presence of the
grating; however. the intensity correlation still has a
measurable value for L, b 2 0.15. so there is a smail but
and the normalized correlation is defined by important range of values 0.15 < L/’b < 0.33 where the
) ‘ Tix,, xa) grating is revealed by correlation measurements but not

X, X)) = s = 3 13) by average intensity measurements.
[FCixy 2y, 2t 3 e : ) <
As our experimental apparatus measures temporal
Defining the sum and difference coordinates in the far cross-correlations of dynamic speckle intensities, we
field. x = (x| + x3)/Zand Ax = x| = r3). and the an- snall expand the previous (¢ = 0) theory!-s and allow the
guiar sum and difference coordinates. s = x/R = (sin §, diffuser to have a linear velocity v = vl + Cofl, where £
+3in0s)/2and ¢ = Ax/R =sin#; — sin ¥, we find that and # are unit vectors, )

a straightforward calculation yields

= Lo s (m = n)A|? L. 2
T gm8nexp =tk |5 - ———| i e ak?
. ) n.m=—= 0 - 9)
MR - cd
I 2222 5 ,,\\1“1 2 1/2
T g 12 =7 § 4+ o == it
Y i&n exp |5 * N
[7 = b2 ( 2 b)) Ixc
where £ = 2x/\.s + 5/2 =sinf. s — 0/2 = sin 7,, and
ve have made ':se of the fact that a > ) in evaiuating SlEet i = = -

the denominator.

Photon-correlation measurements!* estimate the
normalized correlation. defined by

(i lixa))
{Tixy))ythixa))
Since a > L. the far-field speckle has Gaussian statis-
tics. so the intensity and amplitude correlations are
simpiy related?s: where g, 2 \. L is defined by Eq. (3). and time sta-
tionarity is assumed. The expression for the amplitude
cross-correlatior evaluated at coordinates s, 0. 5, 0.
71 becomes

The only dirference here is that the spatiotemporal
correlation of the complex amplitude transmission of
the diffuser is given by

10 cexp(ilolSier. nur] — olZalt + 7). nate + 7))
sexp(~(§1 ~ &2~ ¢

Crixy, xad =

Tom o ma = v,mi 2L, (12)

Crixy, x2) =ivixy, xa)|2 (11

Although the sums in Eq. 19) appear quite formi-
dable. it turns out that. for g, = Jotw. o = 0.35, oniv Re{+1s.. N 7. 0. 71| = expt— w122 Sghy
the terms 1), 1. and £2 are significant. The average
intensity T'tx,. xy) = ['(s = sindy, & = 0) shows broad
peaks centered on the grating diffraction orders; the
angular width of these peaks is equal to kL)~ 1see Fig.
2). The amplitude cross-correlation in the so-called
“antisvmmetric” scan? [z =x = ts =0, 7 = 2 i
sin b, shows srarp correiation peaks whenever sin 4. Caxpn =owr-L-ty -
= =12\ hi. ie.. whenever )ne correiates pairs of {ir- .
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ment of the intensity temporal-correlation function.

ey T ' Figure 4 shows an exampie of such a measurement,

¥ i i which is in excellent agreement with theory.
< Ll / The physical origin of the modulation can be under-
§ / stood by considering a diffuser correiation cell. of linear
5 ! / dimension L, moving across the phase grating of period
g :{ / b. For L « b. each diffuser element has added to it a
R / Qerlodlc phase component. whlgn'gxyes rise in the far
gl j field to a strong cosinusoidal modulation of period b/,
S H As L increases, the diffuser element still has a periodic
0.0 -3 -0 -80 -0 0 L0 component added to it. but the strength of the compo-
+ o EXPERIMENT w nent is now smaller since it is the value of the phase of
— = THEGRY the grating averaged over a distance L: thus the modu-

Fig. 3. Peak vaiues of the intensity cross-correlation mea- lation disappears as L/b — =.

sured at angles (=8, 9,) as a function of L/b. . .
This research was supported by grants from the U 3.

Army Research Office (DAAG-29-30-K-0048) and the
U.S. Air Force Office of Scientific Research tAFOSR-

3
3 81-0003).
§ 0 J. C. Dainty is also with The I[nstitute. of Optics.
s 1 University of Rochester. The address of both authors
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7. Stellar Speckle Interferometry

J. C. DAINTY

With 19 Figures

The use of optical interferometry to determine the spatial structure of
astronomical objects was first suggested by FIzEAU in 1868 [7.1]. Stellar
interferometers measure, in modern terminology, the spatial coherence of
light incident upon the Earth, and the object intensity (or some parame-
ter such as its diameter) is calculated using the van Cittert-Zernike
theorem [7.2]. FIZEAU's suggestion led to the development of specialized
long baseline interferometers; MICHELSON's stellar interferometer [7.3, 4]
directly applied Fizeau's method (amplitude interferometry), whilst the
intensity interferometer of HANBURY BROWN and Twiss (7.5] enabied the
squared modulus of the spatial coherence function to be measured for
thermal sources.

Until recently, single optical telescopes were used in a conventional
(non-interferometric) way, their spatial resolution being limited to ap-
proximately 1°0* due to the presence of atmospheric turbulence or
“seeing”. In 1970, LABEYRIE invented the technique of stellar speckle
interferometry [7.6], in which diffraction-limited resolution is obtained
from a large single telescope despite the seeing. The diffraction-limited
angular resolution 4z of a telescope of diameter D operating at wave-
length 4 is conveniently expressed by the Rayleigh criterion,

i
=122 —, 7.
da 122D (7.1)

yielding approximately 07025 at 4 =400 nm for a 4 m teiescope. The first
results by LABEYRIE and collaborators were published in 1972 {7.7] and
since then approximately 250 papers on speckle interferometry have been
published [7.8]. .

Labeyrie’s important contribution was to recognize that the speckles
formed at the focus of a large telescope have an angular size determined
by diffraction, ie. their smailest dimension is given by (7.1). Diffraction-
limited information about an astronomical object can therefore be
extracted from short-exposure, narrow-band images by an appropriate
method of data reduction.

* One arc second.

57.
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This chapter is divided into six sections. The basic principles are
outlined in non-mathematical terms in Sect. 7.1, and this is followed by a
detailed mathematical discussion of the technique in Sect. 7.2. In
astronomy, the objects under observation are often faint and only a
limited observing time is available, so that the question of signal-to-noise
ratio is very important; this is evaluated in Sect. 7.3. In Sect. 7.4 we
discuss the problem of finding images (or maps) of astronomical objects
using speckle data. This is an area of considerable activity at the moment
both by theoreticians and observers. The equipment required to impie-

- ment speckle interferometry is described in Sect. 7.5 ; this section includes

a discussion of the technmique of one-dimensional infra-red speckle
interferometry which has proved so fruitful in recent years. Finally, we
conclude with a brief sumnmary of the astronomical results produced by
speckle interferometry—these range from measurements of asteroids to
quasars.

Certain topics have been deliberately omitted or are considered only
very briefly. Other methods of interferometry, such as rotation-shearing
interferometry (7.9] and loag baseline interferometry (7.10, 15], are not
cousidered. The discussion in Sect. 7.4 of the phase problem is incomplete
due partly to the uncertainty in the field at the moment ; a more compiete
exposition of this subject may be found in the review paper by BATES
(7.11] which is complementary in content to this chapter. Earlier reviews
of stellar interferometry may be found in [7.12-15]; some useful
references are also contained in two conference proceedings [7.16, 17].

7.1 Basic Principles

Figure 7.1 shows highly magnified images of an unresolvable (*point”)
and a resolved star taken using a large telescope with an exposure time of
approximately 10~ 25 through a filter of bandwidth 10 am. In the case of
the point source (upper row), the image has a speckle-like structure and it
is found that, as with conventional laser speckle patterns, the minimum
speckle “size” is of the same order of magnirude as the Airy disc of the
telescope. A long-exposure image is simply the sum of many short-
exposure ones, each with a speckle structure that is different in detail, and
is therefore a smooth intensity distribution whose diameter is typically
170 in good seeing. Long-exposure images of the point source and
resolved star of Fie 71 wanld chaw losls 8 oo DM, uce. Tue
minimum speckle size, on the other hand, is approximately 07025 for a
4 m telescope at a mean wavelength of 400 nm ; by extracting correctly the
information in short-exposure images, it is possible to observe detail as

neme —————— g~ -
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Fig. 7.1. Short exp photographs of an lved point source (upper row) and a
resoived star, 2-Orionis, (lower rowj taken on a 4 m~ci iescope. The exp time and
filter bandwidth are 10~ s and 10nm. respectively (courtesy of B. L. Morgan and R. J.

Scaddan, Imperial College. London)

small as the limit imposed by diffraction and not be limited to the 170
resolution of conventional images.

A laboratory simuiation illustrating the basic method is shown in
Fig 7.2 for an unresolved star, binary stars of two separations, and a
resolved star (shown as a uniformly illuminated disc). A large number of
short-exposure records are taken, each through a different realization of
the atmosphere, typical examples being shown in row B. For a binary
star, each component produces an identical speckie pattern (assuming
zsplanatiem and nealerting nhatan noise) and a “double-speckle™ effect
may be visible in each short-exposure image in favourable circumstances.
The optical diffraction pattern, or squared modulus of the Fourier
transform, of a typical short-exposure record is shown in row C for each
object. The signal-to-noise ratio is low for a single record and may be
improved by adding many such diffraction patterns (row D). The unre-
solved object has a diffraction halo of relatively large spatial extent, the
binagies give {ringes of a period inversely proportional to their sepa-
ration, and the resolved object gives a diffraction halo whose diameter is
inversely proportional to the diameter of the object. By taking a further
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Fourier transform of each ensembie-average diffraction pattern we
obtain the average spatial (or angular) autocorrelation of the diffraction-
limited images of each object (row E).

The term “speckle interferometry” was adopted by GEZARI et al
[7.7]. The interferometer is, in fact, the telescope—light from all parts of
the pupil propagates to the image plane where it interferes to become a
speckle pattern. In other forms of stellar interferometry, the light in the
pupil is combined in a different way, for example, using a rotation-
shearing interferometer. The beauty of the speckie technique is that the
interferometer (i.e., the telescope) is already constructed to the required
tolerances.

7.2 The Theory of Speckle Interferometry

7.2.1 Outline of Theory

For each short-exposure record, the usual quasi-monochromatic, isopia-
natic imaging equation applies, provided that the angular extent of the
object is not too large’:

Iz, B)= j o, B Pla=x, B~ pda'df
or, in notation,

(=, f) = O(x, BYB P2, ), (1.2)

where I(a, §) is the instantaneous image intensity as a function of angle
(= B), O(a, B) is the object intensity, P(x,fB) is the instantanecous point
spread function of the atmosphere/telescope system normahzed to unit
volume, and ® denotes the convolution integral.

As we demonstrated in Sect. 7.1, the analysis of this data may be
carried out in two equivalent ways. In the angular, or spatial, domain, the
ensembie averaged angular autocorrelation function of the image is
found; this is defined as

Ll R\-/H He' AN 4 R + R\da’ dB’\

or, in notation,
Clap =l p)yxiaB), 1.3

! Throughout this review, the object and image plane coordinates are taken to be angies
(x §), the coordinates in the Founer transform plane beng angular frequencies
{arcsec™').
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where = denotes angular autocorrelation. Combining (7.2 and 3) yields
the following relationship between object and image autocorrelation
functions,

C e, B)=Cpler, BYB Pla. f) & P2 B) (7.4

where C,(«,f) is the angular autocorreiation function of the object
intensity. Note that (7.4) for the object and image autocorrelation
functions is similar in form to (7.2) for object and image intensities, but
with an impulse response equal to (P(a, f)* P, f)).

In the angular (or spatial) frequency domain, the average squared
modulus of the Fourier transform of the image intensity is found: this is
correctly referred to as the average energy spectrum,’

@ (u, v) = Jilw, 0>, (7.5

where

u,v)= j‘j I(a, B)exp[ = 2ri(ua + v ]dadp . (7.6)

Combining (7.2, 5 and 6) yields the following simple relationship between
the energy spectrum of the image (. v) and that of the object ®,(u.v):

P, (w,v) = Pplu, v) T (1), (7.7
where
T (u, v) 2| Tl 03,

and TTu,v), the instantaneous transfer function, is equal to the Fourier
transform of the point spread function,

Tlwv)= || Pla,f)exp( — 2ri(ux +vf)}dadp. (1.8)

Because of the similarity between (7.7) and the Fourier-space isopla-
natic imaging equation (in which image {requency components are equal
to object frequency components multiplied by an optical transfer func-
tion {7.19]), the quantity J (u, v) is referred to as the transfer function for
speckle interferometry or speckle transfer funcrion. Equations (7.4 and 7)
in the real (angular) and Fourier (angular frequency) domains re-

? The energy spectrum of a function equals the squared modulus of its Fourter transform. If
the function is a realization of a square-integrable non-stauonary random process, an
ensemble-averaged energy spectrum can be defined as 10 {7.5). A realizavion of a stauonary
random process does not possess 2 Fourier transform, but a power spectrum can be
defined in terms of a generalized Fourier transform (7.18].

T e SEY AT VRPN T R . 7 -
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spectively are completely equivalent: (7.7) is simply obtained by taking
the Fourier transform of both sides of (7.4).

The conventional (“long-exposure”) image intensity is found from
(7.2) by ensemble averaging:

U@ 8)) = Ola. )YB Pl B)) , {(19)

where (P{a, f)> is the average point spread function of the atmo-
spherertelescope system. In Fourier space, (7.9) becomes

Cilu, v)> = o(u, V) { Tlw, v}, (7.10)

where o{u, v) is the Fourier transform of the object intensity, and < T{w, v))
is the average, or long-exposure, transfer function.

Comparing conventional long-exposure imaging, (7.10), to speckle
interferometry, (7.7), it is clear that the resolution of conventional
imaging is governed by the form of the average transfer function
{ T(u, v)), whereas in speckle interferometry the relevant transfer function
18 F(u v) = T{w, v}i*). In the following sections we shall show that the
latter function retains high angular-frequency information that is lost in
conventional imaging. However, it must be remembered that 7 (y, 1) is a
transfer function for energy spectra, whereas (T(u,v)) is a transfer
function for Fourier components; the loss of Fourier phase information
in speckle interferometry is a severe limitation to its usefulness and
possible methods of retrieving the Fourier phase will be discussed in
Sect. 7.4.

7.2.2 The Long-Exposure Transfer Function

To find the optical transfer function of a system, we must consider the
imaging of a quasi-monochromatic point source as in Fig. 7.3. For an
isoplanatic, incoherent imaging system, the optical transfer function
Tu,v) is equal to the normalized spatial autocorreiation of the pupil
function H(E,n),

J B MHE +aun + ip)dEdn

Ty, v)= == , (7.11)

jf |H(, mi*d¢dn -

where (4, v) are anguiar frequency coordinates. (Z,n) are distance coor-
dinates in the pupil and 4 is the mean wavelength [7.20]. The pupil
function H(¢,7) is the complex amplitude in the exit pupil, relative to a
reference sphere centered on the Gaussian focus, due to a point source
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Instantaneous
Wavefront A(E,7) Instantoneous
\ Image 1(a,8)
L]
Quasi - manochromatic
Paint Source
Turbuient
Medium Teiescoos
Pupil Ho(E,f})

Fig 7.3. The formation of an instantaneous image of a point source through the atmosphere

and in the case of propagation through the turbulent atmosphere may be
written as

H(S, )= A(G,mH (&, n), (7.12)

where A(¢,n) is the complex amplitude of light from a point source that
has propagated through the atmosphere and H (¢, n) is the pupil function
of the optical system alone.

Substitution of (7.12) into (7.11) gives

§ T A MAME + duyn + AvH (&, MHE + Au,n + iv)dE dn
Tlu, v)= == =
I § LA mIP |Ho(é, m12dEdn

(7.13)

The long-exposure or average transfer function is found by averaging
(7.13). The lower line is simply the intensity of light integrated over the
telescope pupil and is effectively constant for a large telescope and/or
weak scintillation. We also assume that A(E, 77) is a (wide-sense) stationary
process [i.e., its mean and autocorrelation function in (7.13) are inde-
pendent of the ,n coordinates], so that the expression for the long-
exposure trapsfer function becomes [7.21]

M, v)) = T(u, v) Ty, v}, (7.14)

where T,(u,v) 13 the atmospheric or “seeing” transfer function,

(AL A™E + g + i)
- 7.
o) JAG > (13
¢
Vo
*
Cema T s ;-—P\»...-
——e i e
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and Ty(u, v) is the optical transfer function of the telescope alone,

§§ Holé, mMHRE + Aun + Av)dE dn
Tow, vy == : (7.16)

) Y
< [T 1HoGnPdcdn )

Thus the long-exposure transfer function is equal to the product of the
transfer functions of the atmosphere and telescope.

A detailed discussion of the atmospheric transfer function and other
relevant properties of turbulence may be found in {7.22-25], particularly
in the comprehensive review by RoDDIER [7.24]. For a Kolmogorov
spectrum of turbulence, the average transfer function is rotationaily
symmetric and is given by

N 83
T,(w)-exp[—l“(#) ] (7.17)

]

where w= |/u? + v? and the parameter r,, first defined by FRIED [7.22], is
equal to the diameter of the diffraction-limited telescope whose Airy disc
has the same area as the seeing disc. The parameter », plays an important
role in both long-exposure imaging and speckle interferometry; it can be
shown that [7.24]

ro A%5(cos Y5, (7.18)

where 7 is the zenith angle. Typical values of r, lie in the range 5 to 20cm
at a good observing site in the visible range; since an r,, value of 10cm at
4A=300nm is equivalent to ry=3.6m at 4= [0um, it follows that 2 4m
class teiescope is severely seeing-limited in the visible but essentially
diffraction-limited at [0 um.

The angular “diameter” of the seeing disc, or seeing angie w, is defined
by

wsl, (7.19)
o

and is therefore proportional to A~ "% At A=3500nm and r, = 10cm. the
seeing disc has a diameter of approximately 5 x 10~®rad or 1.0.

Measurements of the long-exposure transfer function and the param-
eter 7, have been reported by DaiNTY and Scapoan {7.26], RODDIER
[7.27], and BrowN and ScaDDaN [7.28] and there is good agreement
with (7.17).
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7.2.3 The Speckie Transfer Function

The transfer function of speckle interferometry, J{u,v)= {|T(u, v}i*),
refates the average energy spectrum of the image to that of the object.
Using (7.13), we can write |T(u, v)|? as [T(u, v)|> = &/(u, v)y B, where

A v)= 5§ A&, n,)A%E, +iun, +i0)4%(E50,)
A, +Aun, + ANH (S 1 VHSE, +Awn, +4v)
CHy G 1) H (&, + Ay ny + av)d dn, dE,dn,

and

o 2
=\ [ 1AM 1Ho(& mI*dEdn]| . (7.20)

As before, A(¢,n) is assumed to be a stationary random process with
weak scintillation ; for convenience we define {|Ai*) =1 and the pupil
area &,

k-]
= | |Hyn)Pdédn (721

(this is the true pupil area for an unapodized, or clear, pupil).
With the substitution §'=¢, -, and n" =n,—n,, (7.20} yields the
following expression for the speckle transfer function:

Fu)=L" || A ;& 0w, §n)dEdn,
-0
where .# is a fourth-order moment,
A0 ) 2AG  n DANG  + A +a0ANE + ¢ n )
CAG, + & FAun 0+ 4v) (7.22)

and
Hluv; I )= [§ Hol n)HYE, +iwn, +4v)

HYE + & MG, +§ +dwn, 0 +AvdE dn,

Clearly, the quantity .4 characterizes the atmospheric contribution and
X the telescope contribution to the speckle transfer function.

Further simplification of (7.22) requires that an assumption about the
joint probability distribution of the process A(S,n) be made. The most

L e A WP YR " I A - SN
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satisfactory distribution is the log normal, in which the log modulus and
phase each have a Gaussian probability density. KoR¥F [7.29] evaluated
the speckle transfer function using this model and results will be shown
below ; however, neither this model or the zero-scintillation versions of it
[7.24] have a simple analytical solution and require extensive numerical
calculatons.

In order to illustrate in a qualitauve way the form of the speckie
transfer function, we shall assume that A(¢,n) is a complex Gaussian
process [7.30]. This is a poor assumption in good seeing, although it
improves as the seeing deteriorates; this assumption also violates the
weak scintillation requirement for normalization. For a complex
Gaussian process, the fourth-order moment of (7.22) reduces to a product
of second-order moments

K0 §, )= A 1 )AME, + A+ Avp)
(A*E, +¢n +MAG, +E + A, 0 +A0)
+CAEG L, )AMNE + S 1D
AME, FAwn +ADAE, = § +Aun, 0 a0,
which, when substituted into (7.22) yields
T (w 0) = T, )2 1 Tyuol? + 572 [ 1T A A)?
K (v, &, nNdE'dn’" . . (7.23)

Now |T,(§'/4, n'/A)? is of width of order ro, 4 and J# is essentially constant
for such values of 7, n', provided that |/ u* +v* <(D —rg)/i. The second
term of (7.23) therefore reduces to0

P[] ITUE fha AN E dn’ x H (00,0, (7.24)

except for |/uZ +02 >(D=ry)/i
The first integral in (7.24) can be evaluated using (7.17) to give
0.109%r%; the quantity #(u,v; 0, 0) 15 simply

H(u,v,0,0)= jj IHQ(‘—[-’IL)II'HO(61+;'“-”1 "'lv"zdcxd"l '

which, when multiplied by &~ is the diffraction-iimited optical transfer
function Tp(u,v) for an unapodized, or clear, pupil; and finally, the
remaining &~ ' equals 4/zD?.
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Thus the expression for the speckle transfer function reduces to
T (u, v) = Tl 0))[2 +0.435(r,/ DY T (w0, {1.25)

or, defining the number of speckles as

2
N,,=2.3(2) .
To

. (7.26)
7 (u,0) =K T 0D + = Tp(u0).
N,

In both equations it is assumed that |/ u* +v* S(D—ry)/a

The essential feature of the speckle transfer function, (7.25 or 26), is
that there is a term proportional to the diffraction-limited optical transfer
function, that extends almost up to the diffraction-limited cus-off D/4;
expressions (7.25 and 26) indicate that this result is independent of
telescope aberrations [7.30], although there is, in fact, a weak dependence
on aberrations to be discussed in Sect. 7.2.4. With D=4mand r, =0.l m,

0/15310 0/ry 5100

“tv i9q narmai ':. a]
mode! ; 1
~2 = aq normal modai
- b 1
E -4 L -+
% b i
g 4 E 3
|
006010 08 09099 0.05 00T 08 .o.s Xty
w/woy w/ o
¢}
——— /1y 15,08 b
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3 Fig. 7.4. (a) Companson of the
= speckle transfer function predicted
b by the log aormal model with terms
2 (1) and (2) of (7.26) for the complex
Gaussian modei, for D/r, =10 and
100 [7.49]. (b} Comparison of the
speckle transfer function predicted
by the log normal model with ex-
peri | resuits {7.32]
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the number of speckles N, is approximately 3.7 x 10%, indicating that the
diffraction-limited information in the image may be carried with a low
signal-to-noise ratio. However, the normalization of (7.25, 26) to unity at
zero spatial frequency gives a misleading impression of the signal-to-
noise ratio which is best evaivated by other methods (Sect. 7.3).

Since (7.25, 26) are based on the assumption that 4A(¢,n) is a complex
Gaussian process, they give only the qualitative behaviour of the transfer
function. The speckle transfer functioa can be calculated using the log
normal mode! and these results are compared to (7.26) in Fig. 7.4a for
Dfry=10 and 100 [7.49]; the main differences lie in the region between
the low- and high-frequency terms. In fact, at low spatial frequencies, the
correct asymptotic form of the speckie transfer function is {{ TDgl?, where
(T)sg is the so called “short-exposure” average [7.22, 29] (ie, the
average when each point image is re-centered). Careful measurements by
AIME et al [7.31] and CHELLI et al. [7.32] are in excellent agreement with
the log normal model, particularly if the effect of the centrai obstruction
and the (small) effect of defocus are allowed for. Fig. 7.4b shows the result
of a measurement in the infra-red.

7.2.4 Effect of Aberrations

Telescope aberrations have two potential effects on the speckle transfer
function. If they are very severe, optical-path differences greater than the
coherence length of the light may be introduced and this would lead to a
strong attenuation of the transfer function. A proper analysis of this effect
requires a detailed consideration of temporally partially coherent imag-
ing; this is not carried out here since the effects in normal circumstances
are small, as the following analysis shows.

Consider the simpiest aberration—defocus—of magnitude m waves at
the edge of the pupil; the longitudinal and angular transverse ray
aberrations 4z and dJa, respectively, are given by

22
4z= 8";;{

and (7.27
8mi

Aq = ~——

Under most observing conditions, focus can be established to a tolerance
da of less than 10, giving a maximum vaiue of m of approximately 54 for
a 4 m telescope. The coherence length [, of light of bandwidth 4. is given

69.
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approximately by
Iz
E s

and with typical bandwidths (d4 =20 nm, {=500nm) it is clear that I,
>ma. [n practice, aberrations only introduce path differences greater
than the coherence length if the bandwidth is large or the aberrations are
severe.

Aberrations also affect the shape of the speckie transfer function in
the quasi-monochromatic case; their effect reduces as the ratio D/r,
increases and disappear in the limit D/r,~x. The effect of several
aberrations was investigated by DaINTY ([7.33] using the complex
Gaussian model for the atmospheric turbulence. More precise calcu-
lations for defocus and astigmatism were made by RODDIER et al (7.34]
using the log normal mode! and were compared to the measurements of
KARO and SCHNEIDERMAN [7.35]. These results are shown in Fig. 7.5: it
should be emphasized that the defocus in this case was made artifically
large to illustrate the effect, with ms6.44 corresponding to an angular
transverse ray aberration (of extremal rays) of da=373.

For aberrations other than defocus, intuitive reasoning based on the
approximations necessary to obtain (7.25, 26) suggests that the effect of
aberrations is small if the seeing disc is larger than the point spread .
function due to telescope aberrations alone. Thus, a telescope of poor
optical quality achieves diffraction-limited angular resolution if suf-

(7.28)

=

tog <| T(w)?>

|
Q 0.5 [Ke]
/oy
Fig 7.5. Solid lines—theoreucal speckle traasfer {unctions for D/r,=19.2 in focus and

defocused by 6.4i Broken line—curve observed by Karo and Schneiderman under
defocused conditions [[7.34]
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ficiently severe atmospheric turbulence (real or artificially induced) is
present [7.30]. Unfortunately, poor seeing (small r,) also results in a low
signal-to-noise ratio (Sect. 7.3).

7.2.5 Effect of Exposure Time

In practice, each image is the result of a finite exposure time 4¢, which
always has the effect of attenuating the speckle transfer function. Let the
instantaneous point spread function at time ¢ be denoted P(a, 4, 1) and the
instantaneous transfer function be T(u, v, t). The speckle transfer function
for instantaneous exposures (4:—0) is defined by

T (u,0) =T v,0)*>, (7.29)

whereas for an exposure time d4¢ it is equal to
1 Jr
T, v)= F”U"(u. v, 0)T(w, v,t')>dedt’ . (7.30)
]

The term (- in (7.30) is called the temporal cross-energy spectrum and
plays an important role in time-integration effects. Assuming temporal
stationarity of the process Tlu, v, ), (7.30) may also be written

+dt
J;,(u.u)adit ) (1—%><‘I"(u.v.t)ﬂu,v.t+r)>dt. (7.31)

-dt

The finite exposure time speckle transfer function, 7~ (1, v), is always less )

than (or equal to) the instantaneous transfer function J(uv), as the
following analysis shows [7.36]. The Schwanz inequality implies that

KT v, )T, v, £+ 0D S Tl 0, 02D
so that, using (7.31),

-t
T v)s Zl;.'f,,(l - %)](T"(u v, )T{w, v.t +7)dide

Lo
53-,_“(1- 3)<mm, O1>ds

=2 Tw v ) T (,0),

T ) ST (4, v). (7.32)
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This is a general result which is independent of the detailed nature of
the turbulence. The magnitude of the attenuation of J(u v) due t0 an
exposure time At depends, from an experimental point of view, on the
form of the temporal cross-energy spectrum { T*{u, v, ) T v, £ + 1)) ; only
qualitative estimates of this function have been reported [7.37].

The temporal cross-energy spectrum is equal to the Fourier transform
of the spatially averaged space-time? intensity correlation function,

{T*w v, )T, 0, t+1))
= {7117 <PaB.0Pla+daB+4B.1+0)>dndp
-expl = 2ni(ude +vaf)lddaddp. (7.33)

where (P(a, B, 0)Pla+da, B+ 4B, t+1)) is the space-time cross-
correlation function of the instantaneous point spread function. A few
measurements of the spatially integrated space-time cross-correlation
function have been made [7.38, 39]. They show that, in general, this
function is not cross-spectrally pure, so that it cannot be written as the
product of two separable functions of (4, v) and ¢,

(T 0, )T, v, £+ 1)) ® T (1, 0)Clr). (7.34)

{This result is referred to in Sect. 7.3.3 on the optimum exposure time.)

When da=48=0, the space-time cross-correlation is simply equal
to the temporal autocorrelation of the point spread function
{P(a, B, )Pz, B, t +1)). Several measurements of this function have been
reported {7.38-41] and a sample of results taken at Mauna Kea, Hawaii,
are shown in Fig. 7.6; the average correlation time of the image intensity
was 15ms (61 cm telescope). [n site testing for new locations for stellar
interferometry, it is important to measure both the spatial and temporal
propenties of seeing.

Although it is the cross-energy spectrum that most directly influences
the effect of a finite exposure time Jt, from a more fundamental point of
view the important quantity is the fourth order correlation function of
the compiex amplitude in the pupil:

CAG DAY +E,n+m,0)
A+ nFn, t+DAG HE L nFn e+ (7.35)

¥ As given in (7.33), this is an angle-time correlation function ; the name space-time is more
widely used, distances (x, y) in the image plane being reiated to angies (x §) by x=maf,
y=ff where f is the focal length.
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Fig 7.6. Temporal image ity over 5 nights at Mauna Kea, Hawaii,

measured using a 61 cm telescope {7.39]

(compare with the expression for .4 in (7.22)]. For both compiex
Gaussian and log normal complex amplitude, this fourth order moment
is determined by the behaviour of the second order moment. RODDIER
and coworkers [7.42, 43] have calculated the effect of a finite exposure
time on the speckle transfer function using the log-normal modei and the
assumption that the complex amplitude A(S, n, r) moves rigidly across the
telescope pupil (the Taylor approximation). For a velocity v along the ¢
axis, .

{AG, m )AMG + A, n+dn,t+1)> = f(4¢ —vT, In), (7.36)

For a telescope of diameter D, a velocity v of the turbulence impiies a
characteristic image time scale of D/v; the results in {7.42] show that the
attenuation of the transfer function is not too severe provided that 4t
<Dfv.

Spatio-temporal measurements (of |4/%) imply that, in addition to the
rigid trasslation described by (7.36), there is also a strong decorrelation
due to “boiling” of A(S, 7, ¢). This can be explained by a multilayer model
for the turbulence [7.24] with a velocity distribution dv of the atmo-
spheric layers; this leads to a characteristic time scale of r,/dv and a
uniform attenuation of the high-frequency part of the speckle transfer

, function.

KARO and SCHNEIDERMAN [7.44] have measured the effect of a finite
exposure time on the speckle transfer function ; their results obtained on

73.



2n2 J. C. DaNTY
Q T
-«
t Sms )
HOmy b
b 20ms -
- = 40ms 4
2 ol -
A
- 4
=
v o2 3
e F p
2 F 1
F 4
-!E. 80ms &
o 160 ms. 4
- 320ms
0 Q) 02 03 o 0:5 06 07 o8 Q09 10

w/wor,
Fig 7.7 The effect of finite exposure time on the speckie transfer function [7.44]

the 1.6 m telescope at Maui, Hawaii, are shown in Fig. 7.7. Unfortunately,
the spatio-temporal atmospheric data required to compare these
measurements with theory were not available. However, the uniform
attenuation suggests that the wavefront “boiling” dominated over simpie
rigid translation and implies a time-scale consistent with ro/dv==20 ms.

7.2.6 Effect of Finite Bandwidth

A finite bandwidth 44, centered at i, has two effects both of which
attenuate the speckle transfer function. These effects are identical to those
observed in polychromatic laboratory-generated Fraunhofer plane
speckle patterns discussed in Chap. 3. The two effects are (i) a radial
dispersion effect similar to that produced by a grating and (ii) a loss of
speckle contrast caused by atmospheric (or, possibly, telescope induced)
optical path differences being comparable to the coherence length
I, =1/4} of the radiation. .

In accordance with simpie first order grating theory, a spread of
wavelengths 44/X causes a spread in diffraction angles dw/d,

do 41
—_— .
@ A

Taking @ to be the seeing angle i/r, (7.19), and defining w, to be the
angular diameter of a speckle (=4/D), we find that the fractional radial

© e — -
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elongation of speckles, dw/w, at the seeing angle to be given by

To determine a criterion for the maximum permissable value of 44/, we
require that dw/w, <1, yielding

<l (7.37

[AA
. D

—
A

In order to calculate a criterion for coherence length effects to be
negligible, we require a formula for the root-mean-square optical path
fluctuation a,() between two points spaced  apart in the telescope
pupil; the Koimogorov theory [7.24] predicts that

. q’ 56
a:(é);o.m(r-) . (1.381

0.

in which ¢ (¢) is in fact independent of wavelength since ry=i%®. Thus
over a telescope aperture of diameter D we may estimate o, by
substituting ¢ =D in {7.38); requiring that the coherence length |, >, we
obtain

{Al
-
A

Other, more stringent, criteria have been suggested [7.23). For a typical
r,=0.1 m and D=4m, criteria (7.37, 39) yield

o) 7.39

2

4] <oums. %] <o
A4 Al

implying that the chromatic dispersion effect is dominant and that, for
4 =500 nm, the bandwidth 44 should be less than 12.5 nm.

Measurements by KarRo and SCHNEIDEMAN (7.44] with D/r,=14
show no discernable effect on the speckie transfer function for di/{
<0.06; this is coasistent with [44/4], <0.07 given by criterion (7.37).
Even for 44/£%0.14, the mid-frequencies of J (4 v) were attenuated by
only a factor of two.

Since the chromatic dispersion effect is important, it may be worth-
while to design a relay optical system that removes the dispersion [7.45].
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Various optical systems have been suggested for this [7.46], but they
suffer by having a very small effective field angle and no design has yet
been successfully incorporated into a speckle camera system.

7.2.7 Isoplanicity

If a linear system is non-isoplanatic (ie., if its point spread function
depends on both object and image coordinates), then the elementary
convolution relationship of (7.2) is replaced by

Ha.B)= {] O, B)Pla—o.B=F ;% B)dedf (7.40)

where P(da, 484, 8) is the instantaneous point spread function for an
object point at («,8), There is now no meaningful concept of an
instantaneous transfer function or a speckle transfer function. However,
defining T{u, v;«, 8') to be the Fourier transform of Pla—«, §~f§'; ¥, #)
with respect to the variables (a, 8), the average image energy spectrum
®,(u4, v) reduces to

®,(u, v) B i, 0} = !5 Colay, B,) (Tl v; 2, B)
: T.(u! ’7;1 —apﬁl —ﬁ1)> Cxp[~ zm(“al + vB[)]daldﬁl ' (741)

where 1, =a—-a and 8, =5 -5
If the function T(u,v;«, 8") is independent of the object point (', §),
ie. the imaging is isopianatic, then (7.4{) simplifies to the usual result.

D14, v) = Polus, v) | Tlas, 03D )]

However, according to (7.41), there is no longer a simpie relationship
between object and image properties, and the form of the cross-spectrum,

(T 0; 2, )T w0, 4 =~a,, 8 =B,)>

between speckie patterns produced by two point sources separated by
angle (a,,8,) piays an important roie.

Korer et al. [7.47], SHAPIRO [7.48), and FrieD [7.49] have in-
vestigated this problem using the log-normal model for atmospheric
turbulence. However, a more complete analysis can be carried out if the
complex Gaussian model of the wavefront A(¢,n) is used, as shown by
RODDIER et al. [7.50]. Using a muitiple-layer model for the turbulence,

76.

[ -



LENE

PSS g

Stellar Speckie Interferometry 275

they estimate the “atmospheric isopianatic angle” dw to be given by

20362

dw=0.36 R -
where 4h is a measure of the altitude dispersion of the turbulent layers
[7.50]. This simple relationship does not reveal the fact that high angular
frequencies decorrelate more rapidly than lower ones as the angle of
separation (2,, 8,) increases, but gives a good estimate of the extent of the
isoplanatic region. Based on measured profiles of the variation of
turbulence with altitude (see Vernin in [7.42]), predicted isoplanatic
angles were in the range 179 to 574 over six nights at Haute Provence
Observatory, with an average of 371 [7.50].

Several measurements of the isoplanatic angle or related quantities
have been reported [7.37, 51-53). The values vary widely, the most
reliable quantitative estimates being in the range 1°5-570 [7.51, 52], ie.
the same order of magnitude as the theoretical predictions. Qualitative
estimates, based on the successful implementation of speckle holography
[7.37, 53], indicate some correlation of image intensity for stars as far
apart as 2270,

(7.42)

7.2.8 Self-Calibration of Speckle Interferometry

In order to recover the energy spectrum of the object @,(u, v), the average
energy spectrum of the image ®(u, v) is divided by the speckle transfer
function

Polu, v) =P (u, v)/ T (u,v). (7.43)

In practice, the speckle transfer function is estimated by finding the
average energy spectrum for a point source (or reference star).
Unfortunately, as we have seen in previous sections, the speckle transfer
function depends on a number of atmospheric parameters (such as r, and
time scale) and these parameters themseives vary considerably over both
short (~seconds) and long (~hours) periods of time. Under stable
atmospheric conditions, application of (7.43) is straightforward, but
under (more typical) unstable conditions, the use of (7.43) can lead to
considerable errors in the estimation of the object’s spectrum. This is less
critical for measurements of simple structural features of an object (¢.8..
the vector separation of a binary star) but crucial for photometric
features (e.g., magnitude difference of a binary star).

Two approaches to this problem have been suggested. The first is to
make simultaneous measurements of r, and use the established theory to
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predict the form of the speckle transfér function [7.24). The measure-
ments of AIME et al. [7.31] and CHELLI et al. [7.32] suggest that the
instantaneous (4¢—0), narrowband (44 —0) speckle transfer function can
be predicted for an aberration-free telescope, but in practice focussing
errors, aberrations, the finite exposure time and other effects may
influence it. Nevertheless, this appears to be a promising technique,
particulariy in the infra-red where the second approach is less reliable.

The second approach, originally suggested by WORDEN and cowork-
ers [7.54, 55], involves subtracting the cross-correlation of uncorrelated
images from the autocorrelation of individual frames. Let I{a, 8) be an
instantaneous short-exposure image and I'(a, 8) be another instantaneous
short-exposure image taken some time after the first one so as to be
uncorreiated with it; then, denoting the resuit by Ci(«. 8),

Cilz, By = (Ha, B)* I(2, B)>
=< la, = I B)>. (7.44)

In fact, no second image is required, since (7.44) is exactly the same as
[7.56]

Cila, By=CI(a B) =< I(a, B)>
=I{a, BV *= (U, B)) (7.45)
i.e. the average of the angular autocorrelation minus the autocorreiation
of the average image.

These equations may equally well be written in the angular frequency
domain, giving a resultant image energy spectrum P(u. v),

Pi(u, v) = Do, )T (4 v), (7.46)
where the transfer function for this technique is given by
T, v)= Tt o)1) ~ (K Tl )2 (747

The original hypothesis [7.45] was that the shape of F (u,v) is inde-
pendent of atmospheric seeing, and this is correct for the compiex
gaussian model of the pupil amplitude A(,7), as can be seen b
substituting (7.26) into (7.47): .

T ()= Vl- Tyl v), (7.48)
N,

where N is the number of speckles (22.3(D/ry)%), and Tp(wv) is the
diffraction-limited transfer function.
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Two factors combine to invalidate this result for the lower angular
frequencies. First, as remarked upon ecarlier, the asymptotic form of the
low frequency dependence of the speckle transfer function is
I T, v))sgl?, where { T is the average transfer function of centroided
(tilt-removed) images; this could be taken into account, in principle, by
centroiding each image {7.56] or by other methods {7.57].

Second, the additive form (7.26) of the speckle transfer function is not
predicted by the more accurate log-normal model, and the end result is to
invalidate this method for frequencies (u, v) less than approximately the
seeing limit, i.e. (4 v)Sry/A [7.55, 58). When D/r, is large, say > 10, the
seeing-limited frequencies constitute only a small fraction of the availabie
frequency plane and this method may be the most satisfactory way of
selfcalibration. But in the infra-red, where D/ry<10, it is not
appropriate.

7.3 Signal-to-Noise Ratio

In the visible region of the spectrum, the signal-to-noise rato of a
measurement and the limiting magnitude of speckle interferometry are
ultimately determined by the fluctuations imposed by the atmospheric
turbulence and the quantum nature of radiation. Although early film-
based speckle cameras were limited by other types of noise, the improve-
ment in detector technology over the past decade has made available
detectors that are photon-noise limited (7.59]. Thus in this section we
shail discuss only the fundamental noise sources relevant to visible light
speckle interferometry (the infra-red case is discussed in Sect. 7.5.2).

Let Q be some quantity that is to be estimated by speckle in-
terferometry ; @ may be (a) a point in the energy spectrum $,(u, vj of the
object, (b) a point in the-autocorrelation function Cy(¢, 8) of the object, or
(c) a parameter derived from the autocorrelation function or energy
spectrum, such as the diameter of a star, binary separation or magnitude
difference.

We define the signal-to-noise ratio, SNR, of this measurement as

expected value of quantity

R
SNR= standard deviation of estimate’

or

Q@ .
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where var(Q)={Q%> -<{Q>? is the variance of Q. In the analysis that
follows, the SNRs relate to an estimate of Q based on a single frame of
data. Normally, one would take M frames of data and, provided these are
statistically independent, the overall SNR for the M frames (SNR),, is
simply given by

(SNR), =SNR-M"2. (7.50)

The signal-to-noise ratio is the inverse of the relative error of
measurement and in a given astronomical application we would nor-
mally be interested in the relative error on some parameter (such as
diameter), as in (c). However, each probiem has its own specific parame-
ters of interest and to keep our results as general as possible we shall
consider the SNR of the energy spectrum or autocorrelation function.

Several investigations of the SNR of a measurement of the autocor-
relation function have been made [7.33, 57, 60-63] and the review in the
first edition of this volume (7.12] outlines this approach. However, it has
been shown [7.64] that the autocorrelation and energy spectrum ap-
proaches give exactly equivalent signal-to-noise ratios, although the
detailed expressions show little apparent similarity. The decision whether
to use the autocorrelation method or the energy spectrum method of data
reduction should be based on operational considerations and not on
SNR considerations. Thus in the following subsection we evajuate only
the SNR of the energy spectrum of the object.

7.3.1 Signal-to-Noise Ratio (SNR) at a Point in the Energy Spectrum

The SNR at a point in the energy spectrum was first evaluated by
RoDDIER [7.65] and subsequently in more detail by several authors
[7.66-69] and reviewed in detail in [7.70]. In this analysis we shall use
one-dimensional notation for simplicity, and it is convenient to deal with
energy spectra of the image and object that are normalized to unity at
zero angular frequency, denoted by ®(u) and Py(u), respectively. These
are related in the usual way,

B, (u) = Bo(uT (u}, (1.51)

where the speckle transfer function F(u) in the frequency range of
interest is given by (7.26):

Tw= =T, 2 <cuc@r) (7.26)
N i i
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We model the jth image, D/(a), as an inhomogeneous or compound
Poisson process which has a rate proportional to the classical image
intensity [;(a), ie.,

N
D)= i e —ay,),
k=1

where each deita function represents a detected photon event, z;, is the
location of the kth event in the jth frame and N, is the number of
detected photons in the jth frame. In an observation, the squared
modulus of the Fourier transform |d;(u)|* is computed for each frame. It is
straightforward to show that the average of this is given by [7.66]

Udyui®> = N2+ N, (7.52)

where ¥ is the average number of detected photons per frame. [t follows
that the energy spectrum of the photon data, <|d{w)i?>, is a biased
estimate of ®,(u) to the presence of the .V term; in the realistic case in
which the photon events are not deita functions but have a unit volume
spread function S{a), the second term would be Nis(u)l?.

There are two estimators Q whose average yield an unbiased estimate
of the image energy spectrum. One possibility is to subtract the average
number ¥ from each |d;{u)?,

Q, =ldw* =¥, (7.53)
and the second possibility is to subtract the actual number NV,

Q, =ldw)? - N,. (7.54)
In either case, the average values of Q are unbiased estimators,

KQ,> =<Qy) =N dyfu). (7.55)

For the first estimator, the variance is equal to [7.67]

varQ, )= NV + N2+ 224+ NN B fu) + 2 2u) + N*DHu).  (7.56)
As in all problems of this type, the fluctuation at {requency u is influenced
by the value of the energy spectrum at frequency 2u. At exceedingly low
light levels V < 1 (probably of no practical interest!), the SNR per frame
for estimate Q, is, using (7.49, 55 and 56),

SNR=S¥d@m), J<1. (1.57

81.




280 I. C. DAINTY

The use of definition (7.53) for the estimate @, has the disadvantage
that the r.oise associated with Q, contains a contribution arising from .V;,
the actual number of photons per frame. These fluctuations are related to
the brightness of the object and not to its structure. If one is interested in
the morphology of the object, Q, is a better estimate; its variance is given
by [7.69]

van(Q,)= N2+ N2d(2u) + 2N dyfu)+ N*B3(u}. (7.58)

If we consider only frequencies u>4D/4, the second term in (7.58) can be
ignored, yielding a SNR per {rame of

N ns,(u)

sNRam.

(7.59)

Equation (7.59) is the general expression for the signal-to-noise ratio
at any point (4>4D/4) in the energy spectrum of the image. If the speckie
transfer function is known exactly (this is never true in practice), then
(7.59) is also the SNR at a point in the energy spectrum of the object.
Substituting (7.26, 51) into (7.59), and defining the average number of
detected photons per speckle A as

A N 2
as;-aﬂ-(’-") , (7.60)

we find that the SNR per frame becomes

SNR = A Tol@Po)

= m~ (7.61)

Two limiting cases are of interest: very bright objects and very faint
ones.
(i) For very bright objects, such that

ATpw o> 1,
then,

SNRx1. (7.62)
Note that the SNR per frame cannot exceed unity in speckle in-

terferometry and this is one of the disadvantages of the speckle technique,
compared to pupil plane interferometry, for bright objects.

82.




X

Stellar Speckie Interferometry 281

Ty §p0.08
w0’ .
02
7 D S - - = SHA=8210°3
k|
w3t
”"
0 1 0 w02 03 0t
Phomns pur frame N
Fig. 7.8. The variation of SNR per frame with the average ber of d d ph per
frame ¥ for D/r, = 10, 20, and 40. for T,@, =0.05 (7.70]
(i) For very faint objects. such that
AT (udolu) < |
then
SNR= 1\76,(“)
I AT wolu), (7.63)

where, as before, .V is the average number of detected photons per frame
and 7l is the average number per speckle. This particularly simple formula
for the SNR per frame at a point (u>4D/4) in the energy spectrum of the
object is in practice valid for all fainter objects.

An example of the variation of SNR per frame as a function of N is
shown in Fig 7.8 for D/r, =10, 20, and 40. For faint objects, the SNR is
proportional to r3, so that there is a strong dependence of SNR on the
seeing. On the other hand, since the average number of photons per
speckle (7.60) is independent of telescope diameter, the SNR at a point in
the energy spectrum is also independent of telescope diameter, for faint
objects. Of course. a larger telescope yields more independent points in
the energy spectrum.
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7.3.2 Optimum Exposure Time

In the low-light-level case, the SNR at a point in the energy spectrum for
M statistically independent frames is, from (7.50, 63),

(SNR), = Y MV & u). (7.64)

It appears at first sight that a larger exposure time (ie., increasing N)
leads to a higher SNR; however, this is true only up to an optimum
exposure time, after which the decrease in M and @,(u) dominates. The
optimum exposure time has been evaluated by WaLKER (7.62], and
O’DonNnELL and DaINTY [7.71].

Let the exposure time be denoted by 4t, the experiment time by T,
and the photon rate by u=N/d:; then, assuming that nexghbonng
exposures are always statistically independent* (7.64) can be re-written as

(SNR), 3 ul/ T4t b, ,(u), (7.69)

where @,_ 4(w) is the measured image energy spectrum for an exposure
time 4:. The temporal behaviour of the image intensity has been
discussed in Sect. 7.2.5; there we showed that the measured image energy
spectrum may always be written, see (7.31),

14 [t o
é, L) 7 _J"'(l I)<’ (u, 2)iu, t + 7)) dx. (7.66)
Both theory and experiment show that, in general, the cross-spectrum
{i*(u, t)i(u, t+ 1)) is not separabie. On the other hand, measurements
{7.39] indicate that the approximation, see (7.34),

<™, 1)ilu, £ + 7)) 3 B (W)C(r) (1.67)

may not be unreasonable under typical observing conditions; in (7.67),
®,(u) is the rormalized instantaneous energy spectrum and C(z) is the
normalized temporal autocorreiation function of the stellar image (some
measurements are shown in Fig. 7.6). Substituting (7.66, 67) into (7.65) we
obtain

T, 4 it
(SVR),,:.d’.(u)Z#]/ i ( 1= ;) Codr. (7.68)
* Clearly, neighboring exposures cannot be stausticaily independent uniess dt) con'ehuon
time of the image intensity : when there are only a smau ber of d pt per
frame, however, there is an approxi statistical i d for gesghboring frames.
A
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Fig. 7.9. Relative SNR at a point in the power spectrum as a function of the le;lgth of the
individual short exp for two models of the time lation of the image intensity.
The overail time of observation is assumed to be constant and it is aiso assumed that the
average ber of d d ph per speckle is very much less than one [7.71]

In Fig. 7.9, the SNR is plotted as a function of exposure time for two
modeis of the temporal correlation function C(r), Gaussian and negative
exponential, each having a 1/¢ correlation time of . ; the Gaussian model
appears to give 3 better fit to the experimental data of Fig. 7.6. It can be
seen that the overall SNR is highest for exposure times 4t equali to 1.67,
for the Gaussian modei and 21r, for the exponential one. This is
somewhat larger than might be expected and certainly much larger than
desirable at high light levels where photon noise is negligible. Since the
SNR decreases rather slowly for exposure times longer than 2z, we
can also conclude that, if there is some doubt as to the value of , longer
rather than shorter exposures should be used.

733 Limiting Magnitude

LABEYRIE conciuded his original paper on speckle interferometry [7.6]
with the comment that “the technique appears to be limited to objects
brighter than m, = 7", [t was quickly recognized by LABEYRIE and others
that, in fact, the faintest objects that can be resoived by this technique are
a factor of 10% fainter, of apparent visual magnitude m, =20.

Any estimate of the limiting or just-observabie magnitude depends on
the criterion adopted for “just-observabie” as well as on the usual
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parameters such as detector quantum efficiency, bandwidth, exposure
time and so on. Three exampies are given beiow: an estimate of the
complete object energy spectrum, the detection of a binary star, and the
measurement of the diameter of a star. In each case we define a factor F
to be the product of the exposure time 4:[s], the optical bandwidth
44 [nm] and the quantum efficiency q of the detector,

F=d4td4iq. (7.69)

We also use the fact that a source of apparent visual magnitude m, gives
rise to an average number of detected photons per m? per frame, ¥, of
[7.72]

N, =F10®-0-4m, (7.70)

Estimation of the Object Energy Spectrum
At low light levels, combination of (7.50, 63 and 70) gives a SNR of

nD?

3
4 '

I

(SNR)y =M1 ™2 prge-0malo.435(70) T () Tlw).
M [ D O

which can be re-arranged to give [7.70]

m,=18.8+2.510g F ~2.510g(SNR),, + 1.25 logM
+2.5log{Po(t) To(u)] + 5 logr, . (171

For ry=0.1m, M=10% 4t=002s, 4i=250m, q=0.1, So(w) T (u)=0.2
and a limiting (SNR), =5, (7.71) predicts a limiting apparent visual
magnitude of approximately m_=13.3, corresponding to approximately
300 detected photons per frame in a 4 m telescope. Note that the limiting
magnitude defined in this way is independent of telescope diameter and
depends quite strongly on the seeing parameter ry; in fact, the de-
pendence on 7, is stronger than (7.71) indicates since the bandwidth and
exposure time both change with r, [7.23] (Sects. 7.2.5, 6). The value m,
=133 is a conservative estimate of the limiting magnitude for many
purposes, since it is based on the criterion that the SNR have the value 5
at every point in the energy spectrum,

Detection of Binary Stars

Using a formula for the SNR based on the aucocorrelation approach
[7.61, 703, in which the estimated quantity is the height of the binary star
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autocorrejation peak above its local background, we can derive the
following limiting magnitude for a binary whose corponents are equally
bright:

m, =173+ 25108 F - 2510g{SNR),, + 1.25 logM
+25logD+2.5logr,. (1.72)

Substituting the same parameters as above now leads to a limiting
magnitude m, = 17.6, corresponding to approximately 5 detected photons
per frame an average. By increasing the number of independent frames to
10% and slightly increasing the exposure time and bandwidth, binaries as
faint as m, =20 should be observable.

The limiting magnitude predicted by (7.72) has been cffectively
achieved by HEGE et al {7.73] in their measurement of the 162
magnitude component of the triple quasar PG 1115 +08 using approxi-
mately 20,000 independent frames.

Estimation of Object Diameter

WALKER [7.57] has made a comprehensive study of the accuracy with
which the diameter of an object can be estimated by speckle in-
terferometry, assuming a known limb darkening profile of the star. His

20p
18 r—
My

16
Fig 7.10. Limiting magnitude

(G m, as a function of the desired
fractional accuracy for a typi-
cal set of obserying parame-

12+ ters on 2 4m-ciass telescope
(observing period: 2000s)

10 " L L I (7.58]

10 [Ke) o.! 0.0!
Accuracy(%)

results are summarized in Fig. 7.10 for a coilection of observing parame-
ters that are similar (but not identical) to the previous two cases. For 1%
statistical efror in a diameter whose value is 0”5, the limiting magnitude is
approximately m, =16. Of course, other deterministic effects such as
those due to atmospheric calibration are not included in this or previous
cases.
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7.3.4 Space-Time Speckle Interferometry

In the apalysis of the optimum exposure time in Sect. 7.3.2, we found that
exposures as long as twice the temporal correlation time of the image
could be optimum from the point of view of signal-to-noise ratio. Such
long exposure times result in attenuation of the high angular frequency
components in the measured energy spectrum, and those remain un-
corrected. Another drawback of the straightforward speckle method is
that no use is made of the fact that photons detected at the end of one
exposure are associated with essentially the same classical intensity as
those detected at the beginning of the next exposure; thus there is a
potential loss of information.

“Space-time™ speckle interferometry [7.71, 74] is an extension of
speckie interferometry that includes correlations in the time domain as
well as in the spatial or angular domain. In one such scheme, the
temporal cross-energy spectrum <i*(w, v, 1)i(i, 0, +t)) is estimated and
used to find an estimate of ®,(u,v) that is not biased by the effects of a
finite exposure time. However, the signal-to-aoise ratio of this technique
does not appear to be any higher than that associated with the “optimum
exposure time” method [7.71]. It does not appear to be worthwhile
implementing space-time speckle interferometry unless other benefits can
be found (such as obtaining object maps [7.74]).

7.4 Recoustruction of the Object Intensity -

The fundamental equation of speckle interferometry relates the average
energy spectrum of the image &,(u,v) to that of the abject Po(u,v),

¢|(“~ v)= ¢o(u» I (wv), (7.7

where J (4, v) is the speckle transfer function. Under favorable conditions
this equation can be inverted to yield an estimate of the object energy
spectrum

Do, vy = o v)|?

=| 1 o prexp ~2etau+ podac] a7

where O(a, ) is the angular distribution of object intensity and o(u, v) is its
Fourier transform. It should be noted that, by the van Cittert-Zernike
theorem (7.2, o(u, v} is a spatial coherence function (strictly, the mutual
intensity) and |o(u, v)| is often called a visibility function.

‘*. A‘ e,

88.



P L O

Stellar Speckle Interferometry 287

[t is impossible, in general, to calculate a unique object intensity
O(a, B) from a knowledge of only its energy spectrum Pq(u, v); this simple
fact cannot be siressed too strongly. In some special cases, unique
reconstruction of Ofa,f) is possible; in a second set of special cases,
unique reconstructions can be formed almost always; and in a third set of
special cases, additional information is available that enables a unique
solution to be found

The object energy spectrum P,(u, v) contains no obvious information
about the phase of the Fourier transform of O(a, §) and for this reason the
problem of reconstructing the object intensity from Py(u, v) is referred
to as the “phase problem” Phase problems arise in many branches
of physics—scattenng, x-ray diffraction, coherence theory and
microscopy-—and a detailed review is beyond the scope of this chapter
(see [7.75, 76]). Our review will be strictly limited to the phase probiem as
it occurs in the measurement of angular coherence functions by stellar
speckle interferometry; short reviews of this may be found in [7.12-15,
77] and a comprehensive review was given by. Bates [7.11]. It is
interesting to note that some of the eariiest work on the phase problem
by Lord RAYLEIGH (7.78] and, in the modemn era, by WoLF [7.79] was
also concerned with coherence theory.

The plan of this section is as foilows. In Sect. 7.4.1 we discuss the
basic reason for the ambigwty of the phase probiem. The next two Sects.
7.4.2, 3 deal with attempts at object reconstruction from the energy
spectrum only, whilst in Sects. 7.4.4-7 we descnibe other methods that
incorporate information in addition to the energy spectrum. The subject
is summarized in Sect. 7.4.8. The review is lmited to the speckie method
of steilar interferometry; in this regard it should be noted that there is
increasing evidence [7.9, 80-82] that other methods of stellar in-
terferometry are probably more appropriate for object reconstruction.

7.4.1 Ambiguity of the Phase Problem

An essentiaily theoretical restriction in the phase probiem, which is
always satisfied in practice, is that the object intensity O(«, 8) has a finite
angular extent with support (2a, 2b); thus o(w,v) is the finire Fourier
transform,

a b
owv)= | | Ofa, B)exp( = 2mi(ua +ch)]dxdp . (7.74)

~a=b

It can be shown that the analytic continuation of o(u. v) to the complex
plane, olz,, z;) where z,, z, are complex variables, is an entire function of
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exponentia} type. Such functions are completely specified by their
(complex) zeros. The zeros provide a unifying concept for the study of all
phase retrieval methods; their importance in interferometry was dis-
cussed by BATEs [7.83] and in a more general context by Ross and
colleagues [7.85-87]. Although the zeros are the unifying concept, they
are not necessarily of practical value in computer-based algorithms due
to the complexity of determining their locations.

Before discussing the reason for the ambiguity of the phase probiem,
we should note that certain phase ambiguities do not affect the form of
the object intensity and are ignored in the following analysis. Defining
the phase of ofu,v) as phase {o(u,v)}, we are not concerned with the
following variants:

phase {o(u.v)} + @, where ¢ is a constant, (7.75a)
phase {o(u, v} + 2m(ux, +vf,),

where (a,, 3,) is 3 constant vector, (7.75b)
— phase {o(u,v)}. (7.75¢)

The addition of a constant phase, (7.75a), does not alter the object
intensity Oz, B); the second variant, (7.75b), leads to a shifted object
O(a+a,, B+B,); the third case, (7.75¢), gives O(~a, ~ f), which is a 180°
rotated version of the object. In the discussion below, these trivial
ambiguities are ignored.

Our approach to describing the phase problem is, following BRUCk
and SopiN {7.88], to represent the object by a finite number of samples,
equally spaced (for simplicity) by 4 on a grid of (¥ + 1) by (M + 1) points.
Defining new complex variables w, and w,

w, =exp{~2miz,4), w,=exp(~2riz,q), (7.76)
the Fourier transform o{w,, w,) can be written as a finite polynomial in

w, and w,

N M
oAw,, wy)=w Y% T 5 O(nd ~a,ma-bwiw].

ASQdmeo
The terms w; ““ and w; ¥ merely define the (a, 8) origin; ignoring these,
and simplifying the notation we write

Ny M
O(Wl, “’z)’ Z Z omu“q“q' (777)

AsOm=0Q
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The most important feature of (7.77) is that the (discrete) Fourier
transform of the object intensity can be written as a finite polynomial in
the complex variables w, and w,, the coefficients of the polynomial being
the sampled values of the object intensity. In this approach to the
phase problem, the mathematics of polynomials is important; note,
however, that this approach is less general than required by the original
probiem, which was for continuous, not discrete, object functions.

Consider now the one dimensionai case,

Y
olw,)= ¥ O.w. (1.773)
n=Q

A one-dimensional polynomial can always be factorized, or reduced, into
prime factors,

N
o(wl):c l-I (wl_w]_'j)v ) (778)
=1

where C is a constant and w, ; are the roots or zeros. The .V zeros and the
constant C compietely determine the Fourier transform o(w,) and hence
the object O,. If the object is real, as in the present case, the zeros lie on
the unit circle or in complex conjugate pairs around the unit circle and
only N/2 zero locations are required to specify the object; positivity
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: Fourier transform, ic) 2eros of its energy spec-
L trum (courtesy of B. J. Brames)
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requires that no zeros lie on the positive real w, axis. Figures 7.11a
and b illustrate these results.

In a similar manner, we can represent the energy spectrum ®o(u) as an
analytic function o(z,)0*(z3); the conjugate function to o{w,) is just
o(1/w,) so that Py(w,) can be written as a polynomial of degree 2N:

N
Bo(w))=C? [T (w, =w, Jw, = 1/w ). (7.79)
i=1

That is, the compiex zeros of $(w,) consist of the original V zeros of the
object transform plus their inverses. This is illustrated in Fig 7.11c

Thus, the essence of the phase problem is that, without some basis for
choosing between the correct zero and its inverse, we could construct 2%'2
equally valid sets of NV zeros each representing a real, possibly positive,
object. In the one-dimensional case, there is no unique solution to the
phase problem, in either a theoretical or practical sense; additional
information is required to find the object intensity.

Consider now the two-dimensional case, where the Fourier transform
of the object intensity can be written as a polynomial in two complex
variablies,

N M
Awyw)= T T 0, wiw]. 77

a®sOm=0

NaPIER and BaTEs [7.89] were the first to find that a unique solution to
the phase problem was more likely to occur in this case. In ome
dimension, ambiguity resulted from the factorizability of the polynomial
(7.77a); in two dimeunsions, as shown by BRUCk and Sopin [7.88],
ambiguity may also exist if the two variable polynomial (7.77) is
factorizable (or reducible) and the degree of ambiguity is determined by
the number of non-self<conjugate irreducibie factors. However, there is a
very small probability that any two-dimensional polynomial is reducible;
in fact, reducible polynomials in two dimensions are a set of measure zero
[7.90). Thus one is tempted to assume that the two-dimensional phase
probiem has a unique solution “almost always”.

The uniqueness of the two-dimensional phase probiem is the subject
of much current research. The resuits of applying the algorithms to be
described in Sect. 7.4.3 strongly suggest that effectively unique solutions
may exist for certain objects, although of course it is always possible to
produce counter-examples [7.91,92). Fiooy et al [7.93] and Fienup
[7.94] have used Eisenstein’s irreducibility theorem to define one particu-
lar class of objects for which a unique solution is guaranteed.
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There are three basic approaches to solving the phase problem in
stellar speckle interferometry. [n the first, it is assumed that something
about the object is known. For example, for a symmetric object intensity

O, f)=O(-a, - p), (7.80)

the Fourier transform o(u,v) is purely real and continuity arguments
enable it to be found from |o(u,v)l; a rotationally symmetric object is
included in this category. Speckie holography, to be discussed in the next
subsection, also assumes that the object has a known property. [n the
second approach, one assumes that the two-dimensional phase probiem
is almost unique and seeks an algorithm to recover the object intensity
from the moduius information alone. In the third approach, additional
information is extracted from the speckle images in a number of different
ways (Sects. 7.4.4-7).

7.4.2 Speckle Holography
The technique of speckle holography, in its original and most elementary

form [7.95, 96], relies on the presence of a reference object, preferably a
point source. Let the object field be written as the sum of a'point centered

at the origin and the object under investigation O,(x f) centered at

(@, 8,),
Ola, ) =Ha)d(f)+O0,(a~x,,8-B,). (7.81)

The spatial autocorrelation of (7.81) consists of four terms
Cola. B)= [ 3a)8(BNo(er +2)8(B' + B)der df’

+[j0,@ B0 (@ +2.8 +Pda'df
+0(@a=2,,8—-8)+0(-2=2,, =8=8,). (7.82)

The first two terms are located in the region of the origin, the third is the
object centered at (x,, 8,) and the fourth term is a 180° rotation of the
object centered at (-ax,, —§,). Provided that z, >3a/2 and 8, > 35/2,
where the object extent is (g, b), the third and fourth terms are separated
in angle from the first two and a reconstruction of the object is obtained
(with the 180° rotatic \ ambiguity). WEIGELT [7.97-99] has demonstrated
that this is a useful astronomical technique and Fig. 7.12 shows an

°3.




Fig. 712 Speckle holography of
ADS 3358 [7.98]

ADS 3358 A-B-C

example of the reconstruction of a triple star using speckle holography.
The extent of the atmospheric isoplanatic angle is clearly important in
speckle holography (Sect. 7.2.7).

If the reference point is not separated by the “holographic distance”
then, in general, the object intensity cannot be reconstructed un-
ambiguously unless further information is available. For example, LU
and LoHMANN {7.100] suggested using the long-exposure image as a
mask, and BALDWIN and WARNER [7.101] used the knowledge that one
star is brighter than the others to unravel the object (star clusters) from
the autocorrelation function. Indeed, if the object consists of a discrete set
of points and no vector separation between points occurs more than once
(i.e., non-redundant spacings) then a unique solution to the problem
exists [7.102, 103]. In another special case described by BRuUCK and
SopinN [7.87], a one-dimensional object can be reconstructed uniquely
provided that the reference point is not in line with the object in the two-
dimensional plane. The irreducibility criterion described by Foy et al.
[7.93] also invoives the use of reference points less than the usual
holographic distance,
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WEGELT [7.104, 105] bas suggested a technique called “speckle
masking” that is related to'holography in the sense that the speckle short-
exposure images are preprocessed to yleld an approximation to the
instantaneous point spread function. In a more general sense, the speckle
masking method invoives the determination of the triple correlation

Cyla. B3 30, Bo)m Il B)- Hz =29, B~ Bo) X I, B))
from which the triple correlation of the object,
Cola. B 24, Bo) =2 [0, B)- Ola — 29, B = B,)] *O(a, B),

can be determined by subtraction of bias terms [7.105]. Depending upon
the complexity of the object, it is possible to determine O(a, §) from the
triple correlation Co 8320, Bo)-

7.4.3 Modulus—Only Algorithms

In this approach to object reconstruction in stellar speckle interferom-
etry, it is implicitly assumed that the two-dimensional problem does have
a unique solution. Three algorithms that attempt to recover this solution
are described below. Any result produced by these algorithms is therefore
subject to two uncertainties: a) did a unique solution to the phase
problem exist, even in principle? b) if it did exist, did the algorithm
converge to this solution? Strictly speaking, uniqueness of the solution to
the two-dimensional phase problem is not guaranteed and none of the
algorithms described here have been shown to always converge to the
unique solution when one is known, a prior, to exist. On the other hand,
the overwhelming proportion of experimental evidence suggests that, for
simple objects, some of these methods are successful in reconstructing
object maps.

Herative Algorithm

FIENUP has suggested a number of iterative algorithms [7.106-110] for
computing the object intensity from a knowiedge of only the modulus of
its Fourier transform and an estimate of the support of the object. Two
possible schemes are shown in Fig. 7.13. The first scheme, called the error
reduction method because the mean square error between iterations
always decreases (7.110], is a generalized form of the GERCHBERG-
SaxToN algorithm [7.111]. Starting with an estimate of the object
intensity at the kth iteration O,(a, ), the transform 6, (u, v) is caiculated.
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a 4 A ‘ Fig. 7.13a b. Two iterative ai-
@) 84(a.8)  —m———t——— dfuvitiSieY s for solving the phase
t probilem. (a) error reduction—in
- object space, (A) is where object
Sansfy object Satisty abject h N Y
constraints ats are satisfied, (B) is
Suoss 5; A constraintg whety they are ac. satisfed; (b)
@ (® 181 s 1ol hybrid input-output [7.110]
8t ta. B .__7‘_ 3y 1 [oje'Y
(b) Syta. B .—7_. Selw. )2 1010¥
Form new Satisfy object
nout transform
Buar® 6‘ A constraints
20y=,04 (8 180 ¢ ol
Sita. B re Berorei*

The modulus of this transform is replaced by the given modulus, forming
a new estimate 4, (u, v) that satisfies the constraints of the probiem in the
Fourier transform domain. This is inverse-transformed to give a new
estimate of the object O, (x, 8) which is set to zero in the region where the
object is known to be zero and set equal to zero where negative object
values exist, thus forming a new estimate O, . ,(a, 8) which is the starting
point for the next cycle. In practice, the error reduction algorithm
converges very slowly and it is generally most useful when applied with
one of the “input-output” algorithms. ‘

The second scheme is shown in Fig. 7.13b and is called the “input-
output” algorithm. The only difference between this and the error
reduction scheme lies in how the next starting input O, (%, 8) is derived
from the previous output estimate O;(x, ) and input §,(a, §). To a first-
order approximation, a small change in the input gives a small change in
the output proportional to that in the input (plus noulinear terms); thus,
by changing the input it should be possibie to drive the output in the
desired direction. The most satisfactory version of this scheme, called the
hybrid input-output algorithm is

('),‘, (2, 8) Sé;(a.ﬁ) when object constraints satisfied
=0,(.f) ~v0.(x,8) when not satisfied, (7.83)

where y is a parameter, typically on the order of unity.
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Fig. 7.14. (A) Originai object: (B). (C) examples of simuiated degraded images: (D) Fourier
modulus estimate computed from degraded images: (E) image reconstructed using iterative
algorithm (7.110]

A discussion of the relativé merits of different iterative algorithms is
given'in [7.110]; at the present time, these algorithms are still rather ad
hoc and their success appears to depend to some extent on the skill of the
programmer. Figure 7.14 shows some results obtained by Fienup. These
algorithms tends to successfully recover the object intensity for simpie,
but non-symmetric, objects; the shape of the support of the object also
appears to affect the success of the iterative method. {t should be stressed
that this (and other) aigorithms can fail to converge to the correct
solution for complicated objects,

Phase-Closure Algoriihu

BATES and coworkers [7.112-114] have suggested an algorithm that, in
its original form, may be useful as a starting point for the Fienup

- - A -
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algorithm [7.115~117], and in a future improved form may be valuabie
on its own. Consider an array of N by M values of the Fourier transform
of an object (for a real object of size N by N, M = N/2 + 1); the aim of this
algorithm is to calculate the phases of each point 6, allowing any one
point (usually the origin) to be set to zero. Bates and coworkers suggested
the following two step procedure:

i) Estimate the magnitude of the (N —1) by M phase differences
along the y-axis, 6,,, ;~8; | and the N by (M —1) v-phase differences
lei. -y "91, l

i) Compute the N by M phases from the magnitudes of these (2N M
~ N~ M)=2NM phase differences.

Let us assume, for the moment, that step (i) is possible and see how
phase closure might be used to determine the phases. Consider the
rectangie comprising the first four points (0,0), (1,0), (1, 1), and (0, 1) and
assume that the magnitudes of the four phase differences are known:

18:.0=80,0l=v,. .
16,,,=8, ol =v;,
01, =0,/ =v;,
106.:=85,ol =w,.

(7.84)

Clearly, we can set
85,00 ) (7.85a)
and

0= +v,. (7.85b)

(If in fact 9, , = —y,, the object reconstruction will be rotated by 180°.)
Proceeding around the rectangle anti-clockwise,

0. =v 1y, (7.85¢)
and this leads to four possible values of 8, ,,

6y, =w, T, Ty, (7.85d)
On the other hand. going directly from (0,0) to (0, 1) yields

8. = tw, (7.85¢)

BarEs (7.112] argued that only one of the four solutions (7.85d) will equal
one of the two solutions (7.85e), thus determining the phases at each of
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the four points. If this is the case, then this procedure could be repeated
for all points in the Fourier piane and the object intensity could be found
by inverse Fourier transformation. Since the number of phase difference
magnitudes is roughly twice the number of phases, it may be possible to
use the methods mentioned in Sect. 7.4.7 for improving the phase
estimates.

Even if the above step (ii) works, it is still necessary to find the
magnitudes of phase differences, step (i). These can be estimated by
oversampling the modulus in a scheme in which the Shannon in-
terpolation formulia is replaced by two point interpolation {[7.112]; this
provides only a crude estimate of the phase differences (for example, a
large proportion have to be set equal to 0 or #) and requires improve-
ment for reliable object restoration by itself. Combined with 2 modified
Fienup algorithm that incorporates a preprocessing step to remove the
strong central lobe in the Fourier plane, this technique has been shown
[7.116, 117] to produce excellent reconstructions of simple objects.

Maximum Entropy Algorithm

In general terms, the maximum entropy method reconstructs the
smoothest object intensity distribution consistent with the available data.
It was first suggested for use with phaseless data by GuLL and DaNIELL
(7.118]; as with the other algorithms, there is of course no way that the
maximum entropy algorithm can resolve any inherent ambiguities
[7.119). If there are ambiguities, this method restores the smoothest
object map.

7.4.4 Use of Exponential Filters

The ambiguity of the phase problem arises because the 2V zeros of the
object energy spectrum consist of the N zeros associated with the Fourier
transform of the object, plus their inverses. Given only the 2V zeros of the
energy spectrum, it is impossible, in general, to select the correct zeros
from each zero pair. By making a second measurement of the energy
spectrum of a modified object intensity distribution {the oniginal O(x, )
multiplied by exp(—2raa), where a is a constant], it is possible to
unambiguously recover the correct N zeros and hence the object intensity
itself. This was first suggested by WaLker [7.120] and WoOD et al.
{7.121].

The basic principle of the method is shown in Fig. 7.15, where, for
illustration, there are only three sets of zeros. The zeros corresponding to
the original object are shown as solid circles @ and their inverses as °;
given only the object energy spectrum it is impossible to determine which
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Im w-pigne e o zeros of power spectrum of O
unit circte , » o zeros of power specirum of O exp(-ox)
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Fig. 7.15. The effect of exponential filtering on
‘ zero locations

is the “correct” one. When the object is multiplied by exp( - 27xa), a>0,
the zeros in terms of the z-variable move from z,t0 z; —ia, and in terms of
the w-variable, w=exp(—27izd), from w; to w;exp{2nad); that is, the
correct zeros all move radially outwards by a constant factor, as shown in
Fig. 7.15 (@—®). The energy spectrum of the modified object contains
both these zeros () and their inverses (C); given both pairs of zeros (@, S,
8 and T) the correct zero (®) can always be located. Aithough our
description has been in terms of one dimension, the uniqueness of the
solution also applies to the two-dimensional case.

In astronomy, it is, of course, impossibie to place an exponential filter
over the object! WALKER [7.122] showed that this is not necessary and
that the exponential filter may be piaced in the image piane. Denote the
instantaneous image intensity by /(x 8) and the exponential filter trans-
mittance by G{x, f). The energy spectra of the image intensity and the
modified image intensity (I(z, 8)- G(, §)) are

®,(, v) = lofu o)1 Tl 0N (1.5
and
(1w, v} = Ji(u, V) Bglu, v)|*)
= {|{olu v) T 0)}® g, V)2 , (7.86)

where ® denotes convolution and the other symbols are defined in Sect
7.21.
Provided that

G(al *‘31’31*Bz)’G(GpB,)G(ﬂ;yﬁz). (787)
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Fig 7.16. (a) test object; (b) a short exposure point spread
function; () a short exposure image: (d)~g) reconstructions
using respectively 10, 25, 50, and 100 simulated point and
object exposures [7.123]

wm‘ch is satisfied by the reai exponential function, the convolution of
(7.86) simplifies to yieid

P/(u, v)== o' (1s, 01 <| T (1 0H*> (7.88)
where,

(1, v) = o, )B (14, v}
and

T (4, v) = T(u, 1)Bglu, v).

Assuming that the forms of the two transfer functions (|T{w,v)I*) and
{IT (4, N*) can be found (using a reference star, for example), we can find
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the energy spectra of the object and of the modified object which are

sufficient data for a unique solution to the phase problem.

Having shown that a unique object reconstruction can be found from
lo{u, v)i* and |o'(u, v)l%, there remains the problem of finding a practical
two-dimensional algorithm that converges to this unique solution.
WALKER [7.122, 123] has used an extended version of the Fienup
algorithm that includes both sets of Fourier constraints. Figure 7.16
shows an example of reconstructions obtained by WALKER in a computer
simulation, using this aigorithm. It should be noted that this proposed
method of object reconstruction uses only a single set of data for the
object and for the reference, as the exponential filter can be applied
numerically on the raw data.

7.4.5 Shift and Add

The short-exposure speckle images shown in Fig. 7.1 are of an unresolv-
able star in the upper row and a-Orionis, or Betelgeuse, which is a red
giant star in the lower row. In simplistic terms, each “speckle” in both sets
of images may be regarded as an “image”; for the upper row, it is an
image of a point source and for the lower row it is an image of 2-Orionis.
Such reasoning led HARVEY and coworkers [7.124, 125] to obtain the
first diffraction-limited map of a star other than our own sun.

In the original method, a few bright speckies are selected from each
exposure and superimposed with the aid of a digital microdensitometer

and computer. Figure 7.17 shows the result of this process for a point

object (a) and 2-Orionis in the continuum (b) and TiO absorption band
(c); clearly the giant star is resolved and the difference [(b—)| indicates
possible temperature variation over the surface of the star. MCDONNELL
and BATEs [7.126] have applied superresolution techniques to produce
an enhanced image of Beteigeuse from this data.

This approach to forming object maps has been extended by BATES
and CaDY [7.127, 128] in a technique they call “shift and add”. Let (x, 8,)
denote the coordinates of the center of the brightest speckle in the jth
image; each image is shifted such that (z), ) is at the origin and then
added to all other similarly shifted images, giving the resuit

N
R@p=< T Ia=-2,8-8). (7.89)
N &

This process is carried out for both the object under study and a reference
star; the image of the object is de-convoived using that of the reference
and an algorithm such as “CLEAN™ {7.129]. A theoretical study [7.130]
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Fig 7.17A-D. Diffraction-limited images computed from short exposure photographs by
LYNDS et al. [7.124]. (A) unresolved star (y-Ori), (B) 2-Ori or Betelgeuse, in the continuum,
{C) a<Ori in the TiO band and (D) the difference image (B)~(C). The contour leveis are 5% of
the peak intensity (A)<C); in (D) the interval is 2%, with the broken curve indicating that
the continuum 18 brighter '

has recently confirmed that diffraction-limited information is preserved
in the shift and add method

7.4.6 Phase Averaging

In the technique of speckle interferometry, the Fourier transforms of the
instantaneous image intensity and the object intensity are related by

i{u, v) = olu, v) T(u, v), (7.90)
where T(w,v) is the instantanecous transfer function. The quantities
{li(u, v¥*> and {|TVu,v}*) are measured and an estimate of the object
energy spectrum |o(u v)f is obtained. Taking the logarithm of (7.90) we
obtain

phase({i(u, v}} = phase{o(u, v)} + phase{ T{u, v)} (7.91)

-
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and, taking the average

{phase{ifu, v}}> =phase{o{y, v)} +(phase{ T{u, v)}), (7.92)

where, in all cases, the phase is the value in the interval — x to x. Thus..

provided that {phase{T(u, v)}) is known (or zero), the phase of the object
transform can be obtained from the average phase of the image
transforms; this method was first suggested by McGraMERY [7.131].

Using arguments based on the central limit theorem, it is not difficult
to show that, for D> r, and angular frequencies

ro/A<(u,v)<(D=ro)/d,

the quantity T{u,v) is a circular complex Gaussian random process; it
foilows that

{phase{ T{w,v)})> =0,

and that the phase {T(u,v)} folded into the primary interval —r to n is
statistically uniformly distributed.

The crucial step in implementing the phase-averaging method is
therefore the determination of the “unwrapped” phase (i.e., that in the
intervai —<c to xc) from the phase in the primary interval —=n 1o 7. In
principle, this may be done by assuming continuity of the phase and
following it out from the origin where it can be assumed to be zero. This
procedure is subject to error when the modulus li(w,v)| is small;
O’DonNELL [7.36] has shown that the root-mean-square absolute error ¢
in the unwrapped phase is given approximately by

t

7 T o (793
where N is the average number of detected photons per frame and iu, v) is
the Fourier transform of the instantaneous image intensity normalized to
unity at the origin. Clearly, a small value of i(x, v}l leads to a large error.
For example, for a point object [Po(u,v)=1] at an intermediate fre-
quency [ Tp(w, v)=0.5] and a large telescope (D/r, = 40), an average value
of li{u v)l is on the order of 10™2, implying & > 8 x 10* detected photons
per frame for a phase error of less than 0.25 rad.

Despite the above analysis, computer simulations of the phase
averaging method have shown some promise [7.132, 133], particularly
for providing a starting point to the Fienup algorithm. Other aigorithms

- A .LAA.___ - . R D

104.

v



[

Stellar Speciie Interferometry 303

for phase unwrapping have been suggested by TriBOLET (7.134] and
SwAN ([7.135]; in the latter, the average phase is calculated without
explicit unwrapping, Finaily, MERTZ (7.74] has suggested following the
phases of the angular frequency components in time in order to find their
average value; the error has not yet been evaluated for this approach.

7.4.7 Knox-Thompson Vethod

In this method, first suggested by KNOX and THOMPSON [7.136, 137], the
cross-energy spectrum of the image intensity is computed; following the
notation of Sect. 7.2.1

ilw, o), v
=o', Yo", v") { T, )T, v")) . (7.94)

Taking logarithms of each side and equating imaginary parts, we find
that, :

phase {Ci(u, v)i*(u+ du, v+ dv)>}
=aphase {o(u,v)} —phase {o{u+ du, v+ dv)}
+phase {{T(w, 0)T*(u+du,v+4v)}, (7.95)

where we have made the substitutions
du=u’' =y and dv=v'—-v in(7.94).

Thus, provided that

i) {TMu,v)T*(u+ du,v+4v)> %0 and

i) phase {{T(u, V)T *(u+4u, v+ 4v))} is either known or zero, it is
possibie to find phase differences in the object spectrum. This information
is then used to find the phase of the object spectrum and hence the object
intensity (if the energy spectrum is known). In the following we show
that (i) is satisfied when (4, v)<ry/4 and that phase
{{ T, v)T*(u+ du, v+ 4v))} is approximately zero; we then discuss how
the phase difference information can be used to restore the actual phases.

To evaluate the quaatity (T, v)T*(u",v")) we use a similar ap-
proach to that given in Sect. 7.2.3 to evaluate the approximate speckie
transfer function. In particular, it is assumed that the compiex amplitude
of the wave in the telescope pupil from a point source is a circular
complex Gaussian process. [nstead of (7.23) we now have the foilowing
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expression for { T(w,v)T*(u",v")>:

(T, V)T, v7))
= T, )T (", V)T, o) T3, v")

+y-1§mr("é "")r-("‘«-a.‘. +Av)

o(ép’h)Ho(él +Ml,ﬂ1 + Ay )Ho(izvﬂz)
SHy(&, +au" 0y + Av"YdE dn dE,dn,, (7.96)

where

45’5;‘5;. Aﬂ”h"’z‘
du=u'=u, Jdo=v'-v,

and the other symbols were defined in Sect. 7.2.3. Assuming that H,($,n)
is constant where T,(§/4,n/4) is effectively non-zero. the second term
reduces to, see (7.24),

‘[j T(“‘ "") : (A—C*du.— +Av)dA<dAn

HOLEH(W;"’)JM(%—U—'))‘ dédn. (197

Bearing in mind that the seeing transfer function T(u,v) has a width
xr,/4 that it is clear from (7.97) that { T(w, v) T*(u+ du, v+ dv}) can only
be non-zero if |dul and |4vj <ry/A [otherwise the first integral in (7.97) is
zero].

[f we make the further approximation that the seeing transfer
function has a Gaussian shape [it is more accurately described by (7.17)],
then it is straightforward to show that

: jj |H°(<"")‘2

(T, V)T (u+ du, v+ 40))
= (| Tw, 0)1*> | T(dw/2, dv/2)* . (7.98)

That is, the Knox-Thompson transfer function is simply the product of
the speckle transfer function at (u,v) and the squared modulus of the
seeing transfer function at (4u/2, dv/2). It follows from (7.98) that

phase {(T{u, v)T*(u+ du, v+ dv)) =0.
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Since (7.98) results from an oversimplified atmospheric model, it cannot
be relied upon quantitatively, but it does provide the correct qualitative
condition on |du} and |dvl. Using the log-normal model, FRIED [7.48]
suggests that the optimum value of |dul and |dvf is approximately 0.2ry, 4.

If we consider the Fourier transform of the object to be sampled on a
grid of V by M points there are approximately 2N M phase differences for
a single choice of (4w, dv); several schemes have been suggested for
efficiently computing the required VM phases [7.138-145]. This problem
is similar to that of calculating phases {rom shearing interferograms. It
may be helpful to use more than one value of (du, dv) [7.140].

In a variaton of the Knox-Thompson technique, AITKEN and
DESAULNIERS [7.146] suggest computing average ratios {i(u, v)/i(u + du,
v+ 4v)), a possible advantage being that a separate reference calibration
may not be required. SHERMAN [7.147] has extended the technique to
non-isoplanatic imaging BRAMES and DAINTY [7.148] have given an
interpretation of the method in terms of the compiex zero picture of Sect.
7.4.1; this picture may be useful for studying the role of noise in the
technique. The effects of photon noise on speckle image reconstruction
with the Knox-Thompson algorithm have recently been investigated
[7.149]. Photon noise introduces a frequency-dependent bias which must
be corrected for successful reconstruction. In the photon-limited case
(low light levels), NiSENSON and PapaLIOLIOS [7.149] gave the lower
bound on the number of frames M required for “good” image recon-
struction of a point-like object as

N_\?
M2 lzs(f\-}ﬂ) ,

where N, is the average number of speckles per frame and V( <NG)is
the average number of detected photons per frame.

7.4.8 Summary

In this section we have reviewed a number of possible techniques for
solving the phase probiem, that is, reconstructing the object intensity, in
stellar speckle interferometry. The methods fall into two categories ; those
that require only the modulus of the object Fourier transform (covered in
Sects. 7.4.2 and 3) and those that utilize other information present in the
original speckle exposures (Sects. 7.44 to 7). [t seems obvious that
methods in the latter category are preferable for this particular phase
problem, since they make use of additional information present in the
available data. :
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Although substantial progress in this topic has been made in the last
few years, the map of Betelgeuse obtained by HARVEY and coworkers in
1975 remains the only non-trivial stellar object reconstructed from
speckle data. The practical difficulties in impiementing the algorithms on
real astronomical data are frequently underestimated. Part of this
difficulty arises because the implementation of ordinary speckle in-
terferometry aiso has a number of practical problems that have to be
overcome if photometric accuracy is desired; some of these practical
problems are discussed in the following section.

7.5 Implementation

7.5.1 Data Collection and Processing

Speckle camera systems have been constructed by a number of groups
[7.143, 150-154]. As an example, we shall describe a “first-generation™
system used at Kitt Peak National Observatory for many years (7.153],a
diagram of which is shown in Fig. 7.18.

Referring to Fig. 7.18, light from the telescope passes through an
electromechanical shutter (1) at the front of the speckle camera system
and reaches the Cassegrain or Richey-Chretien focus at (2). At the 4m
Mayall telescope, the image scaie at this focus is approximately 6.5 arc-
sec/mm so that a lens (3) is required to magnify the image 10 or 20 times
giving final image scales of approximately 0.65 and 0.32arcsec/mm,
respectively. At 500 nm, the diffraction-limited angular frequency ofa4m
telescope is approximately 40arcsec ™!, and the sampling theorem there-
fore requires image plane sampling at 42507012, or 0.04 mm or less in
the 20 x magnified image plane; this value also determines the resolution
(or MTF) of the image detection system.

| I | [l !
: m (2 n () 8 (1 (N (L)) "
TR ™
LI MAGE TUse Crmla
ACA 7O0T
1968

Fig 7.18. Schematic cross-section view of a speckle camera [7.153]
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It is necessary to correct for atmospheric dispersion except when
observing close to the zenith. The magnitude of atmospheric dispersion
depends upon a number of factors [7.155], but it is approximately given
by

4z=0.3tanz arcsec/100nm,

in the middle of the visible spectrum. Either a grating system (7.150, 152]
or a pair of Risley prisms [7.151, 153] can be used to correct this; Fig.
7.18 shows the use of a prism pair. The optimum choice of glasses for the
prisms are LaK24 and KF9 [7.156]—these match the dispersion of air
over the broadest wavelength range. A narrow-band interference filter (5)
selects the mean wavelength and bandpass (see Sect. 7.2.6 for a discussion
of the permissable bandpass).

The most critical element in a speckle camera system is the image
detector. Figure 7.18 shows an image intensifier/photographic film
combination, which has the advantage of simplicity. A variety of image
intensifiers may be suitable—magnetically or electrostatically focussed
cascade systems, or microchanne! plate devices; a variable (high) gain and
low background are two practical requirements for the intensifier.
Recently constructed speckle cameras and those under construction all
use some form of electronic readout ; this has the potential advantages of
overcoming the noise and nonlinearity of photographic film and of
allowing the possibility of real-time analysis of the data.

The type of electronic image detector required depends to a certain
extent on the type of astronomical speckle observations that are planned
and the intended method of data analysis. Before describing possible
detectors it is therefore appropriate to discuss methods of data reduction,
In the first-generation speckle cameras, the photographic images were
analyzed in a coherent optical processor; this extremely simple analog
device gives as output the energy spectrum of the complex amplitude
transmittance of the film, the average energy spectrum being found by
summation of the energy spectra of M frames (M < 1000 in practice). This
technique could also be used for other “real-time™ photographic-type
detectors [7.139], but these analog systems tend to suffer from non-
linearities and noise. Digital processing appears to offer more flexibility
and is the only way of implementing some of the object reconstruction
algorithms described in Sect. 7.4.

For conventional speckle interferometry, there are two approaches to
calculating the object information; one is via the average energy
spectrum, as in (7.5), and the other is via the average spatial autocor-
relation function as in (7.3). Allowing for moderate oversampling, large
telescope speckle data requires a format of at least 256 x 256 pixels and a
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Fig. 7.19. Qutput of a vector autocorrelator display in real ime when observing a binary
star (courtesy of B, L. Morgan and H. Vine, imperial College. London)

desirable frame rate is approximately 50s~!. Devices that compute
Fourier transforms of this size at this rate are becoming available, but
their cost may not be justified in this application. Consequently, the
average energy spectrum method of analysis is currently done after the
observations have been made and stored on a suitable medium such as
videotape.

On the other hand, the autocorrelation method of analysis lends itself
to real-time computation. Vokac [7.157] has described a prototype on-
line digitai autocorrelator for 16-levei (4 bit) 64 x 64 pixel images taken at
arate of 25”1, and predicted that full-scale throughout would be possible
with current technology. BLazrr {7.158] and the London group {7.159]
have constructed one-bit vector autocorrelators that process images
containing a few photons ( < 200) at 25s™ . Vector autocorrelators work
on the principle that the autocorrelation function of an image consisting
entirely of ones and zeros (presence or absence of a photon) is equal to
the histogram of vector differences between all possibie pairs of photons,
This algorithm can either be hardwired in a special purpose device or
programmed into a fast commercial or customized microcomputer. An
example of the resolution of a binary star obtained with such a device (in
real-time) is shown in Fig. 7.19. Another approach suggested by CoLE
(7.160] uses optical circuit elements to allow higher photon rates.

Depending upon the type of data analysis to be used, there are several
possible electronic detector systems. One of the most straightforward is
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to use an intensified television camera or intensifier pius teievision
camera combination. The format of the data allows easy storage on
videotape, but digital computer analysis, via a video-digitiser system,
may be tedious, Another possibility is to replace the television camera by
a charge-coupled device (CCD) [7.161]. The.advantage of both of these
approaches is that either analog (intensity) or digital (photon counting)
data may be processed. For low light levels, photon counting devices in
which the position and time of photoelectron events are recorded may
be preferable [7.162, 163], particularly since the recorded data is aiready
in a suitable format for vector autocorrelation processing.

It should aiso be noted that speckle interferometry can also be
accomplished using a single or twin photomultipliers (7.164] or with a
linear array [7.165], but there seems no advantage apart from cost and
only bright objects can be studied. Equipment for laboratory simulation
of steilar speckie interferometry has aiso been described [7.166].

7.5.2 One-Dimensional Infrared Speckie Interferometry

Efficient two-dimensional array detectors in the near infrared (2-5 um)
are not yet widely available and therefore infrared speckle interferometry
has to be practised using only a single detector element. This feature, some
other special probiems that are encountered and its demonstrated
astronomical success, make it worthwhile to devote a section of this
review to infrared speckle interferometry.

At first glance, infrared speckle interferometry would seem less
fruitful then that in the visible range, particulariy in view of the restriction
to a single detector element. Table 7.1 summarizes the resoiution
according to the diffraction-limit for a 4 m telescope (column 2) and the
seeing limit (column 4} for the wavelengths of 0.5, 22(K), 3.45(L), and
4.8(M)pum. From cotumn (2), it can be seen that the diffraction-limited
angular resolution (Rayleigh criterion) is approximately 0703 at 0.5 um,

Table 7.1.

1) 2) k)] 4)
Wavelength 42(D=4m) ro w
[pm) {arceec] (m] [arcsec]
0.5 003 0t 1.00
2K 0.14 0.6 0.74
3.45(L) o 1.0 0.68

43 (M) 0.30 1.5 0.64
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but oualy 0730 at 4.8 um, whereas a 170 sceing limited image at 0.5 um is
slightly smaller, 0764, at 4.8 um. Thus, taking the ratio of columns (2) and
(4), we see that there is typicaily a 33 times increase in angular resolution
possibie by doing speckle interferometry at 0.5 um, whereas the improve-
ments at 2.2, 3.45, and 4.8 um are only 5, 3 and 2, respectively (this does
assume “good” seeing). The reason why infrared specklie has been so
valuabile is that, despite the relatively poorer angular resolution, there are
many more potentially resolvable (i.e., large) bright objects in the near
infrared than in the visible. Some infrared speckle observations are
summarized in Sect. 7.6.5.

The technique of one dimensional infrared speckle interferometry is
described in [7.167-171], particularly the comprehensive paper by
SIBILLE et al. [7.168]. [n the method developed by the French group, the
image is scanned over a long, narrow slit and the light collected by a
single indium antimonide (InSb) detector cooled to liquid nitrogen or
hefium temperature. The bandwidth restrictions are much less severe in
the infrared than in the visibie [see (7.37) and Table 7.1] the maximum
44/X being on the order of 0.13 at 2.2 um and 0.37 at 4.8 um. The scanning
speed of the umage across the slit has to be sufficient to “freeze” the
speckle, rates of 50-100arcsecs™' being typical; the effect of scanning
rate is described by AmME et al. 7.172].

If the scan is assumed to be along the x-axis (corresponding to the
u-axis in the angular frequency plane), the temporal average energy
spectrum <{|{/)*) of the image intensity I(¢)= /(a/»), where » is the scan
rate, is given by

NP =lofu, OF* I T(u, N> Tt , (7.99)

where the temporal frequency f is related to the anguiar frequency u by
Jf=uv and where the slit transfer function for a slit of width z,,, is

sin(mua,,,) .

Toulu) = {7.100)

The one-dimensional temporal energy spectrum can easily be computed
on-line using a commercial microcomputer. By observing a reference star,
the speckie transfer function can be found, so that a section through the
modulus of the object energy spectrum |o(u,0)l can be found. The
compiete moduius couid in principle be found by rotating the scan
direction, although because of practical problems connected with atmo-
spheric instability only north-south and east-west scans are usually made.

Oge of the greatest problems encountered in implementing infrared
speckle interferometry is the instability of atmospheric turbulence.
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Because the seeing limited anguiar frequency portion of the speckie
transfer function is a significant part of the whole transfer function, it is
not possible to use Worden’s scheme for self-calibrating the method
(Sect. 7.2.8). Accordingly, a typical observing sequence is
object—sky~»reference—sky—object, taking perhaps 100-1000 scans of
each and repeating the sequence until consistent results are obtained. The
“sky” measurement is required in the infrared due to emission from both
the sky and the telescope, and an estimate of the energy spectrum of the
object is obtained from

CligggUN = g
2 = () . .
100, OF =2 o> =iy > (7.101)

The signal-to-noise ratio of the slit scan method is derived by SmILLE
et al. [7.168]. In addition to the atmospheric fluctuation and photon
noise of the signal that are the only fundamental contributions in the
visible, there is now also the photon noise of the “sky” background and
noise inherent in the detector, such as Johnson noise. Limiting magni-
tudes, based on the value of the object intensity that yields an energy
spectrum equal to that of the noise sources (or a single 100 ms scan, were
predicted to be of the order of 5 to 6 for the X, L, and M wavelengths,
although practical experience indicates limiting magnitudes of approxi-
mately 7 (K) to 2 (M). SELBY et al. {7.167] used a grating rather than a slit,
thus measuring only a single-frequency component at a time; they claim
fainter limiting magnitudes but these have not yet been achieved.

In a new development of one-dimensional speckle interferometry
(visible or infrared) AmME et al. [7.173] suggested the use of a telescope
with a one-dimensional aperture (e.g. 10 x 800 cm?). This gives a contrast
gain over a circular aperture and, associated with a spectroscope, allows
investigation of the spectral-angular plane with no loss in light.

7.6 Astronomical Resuits

Observational speckie interferometry is now over a decade old, and
approximately 80 papers primarily concerned with astronomical resuits
have been published, some of which are referenced below. Despite the
enthusiasm of a few astronomers, it is only realistic 10 point out that the
technique is not widely used or accepted by the astronomical community
at large. Some possible reasons for this are: (i) relatively few objects,
particularly in the visible, are resoivable by 4m class telescopes, whose
diffraction-limit at 400nm are 0702; (ii) calibration problems make it
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difficult to obtain photometric energy spectra of sufficient accuracy for
the particular astronomical problem; and (iii) only the most expensive
equipment yields faint limiting magnitudes and enabies the vast amounts
of data to be reduced.

The summary of astronomical results given below is divided into four
parts; solar system objects, binary stars, single stars and infrared objects.
In addition to these, some more unusual objects have aiso been observed
using speckle interferometry. For example, HeGE et al: [7.73] resolved
one of the components of the “triple” quasar PG 1115+ 08 as 2 binary,
one of the faintest objects studied by the speckle method (m, x16.2). The
Seyfert galaxy NGC 1068 has been observed in the visible [7.159] and at
22um (7.174), both results revealing a nuclear core containing most of
the luminosity.

7.6.1 Solar System Objects

The angular diameters of the asteroids Pallas and Vesta were measured
by WORDEN et al. [7.54, 175, 176], the results for Pallas indicating some
elongation of the object. The diameter of the planetary satellites Rhea
and lapetus [7.176] and Titan [7.177] have also been measured.

Observations of the planet Pluto and its moon Charon are near to the
limiting magnitude of speckle interferometry, their magnitudes being
approximately 15.3 and 16.9, respectively. ARNOLD et al [7.178] estimate
Pluto’s diameter to be 3000+400 to 3600+400km depending upon
whether limb darkening is incorporated in the model. This is slightly
smaller than that measured by BonneaU and Foy [7.179], 4000 + 400 km
with no limb darkening, who also estimate the diameter of Charon to be
2000+200km and propose a revised orbit for the moon. Both results
imply a mean density of Pluto (and Charon)=0.5gem™?.

The Solar granulation has also been measured by speckie in-
terferometry [7.180-182]; the main technical problem here is the absence
of any reference source for estimation of the speckle transfer function.
Image reconstruction techniques (using the Knox-Thompson aigorithm)
have been applied to solar features [7.182].

7.6.2 Bisary Stars

Speck interferometry has been most successful when used to determine
the any, lar separation and position angle of binary stars. MCALISTER
[7.183-188] has reported over 1000 measurements of resolved binaries,
and 500 binary stars unresolved by the speckle method [7.189, 190, as
well as a number of detailed studies of individual systems [7.191-198].

114.2
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Several hundred observations have also been reported by three other
groups (7.7, 45, 199-206]. Several reasons have contributed to the
success of speckle interferometry in this area; the measurements are
amongst the simplest speckle observations to make, can be made rapidly
on brighter stars (MCALISTER [7.207] reported 125 to 175 observations
per clear night) and yield an accuracy far exceeding visual observations.
MCALISTER ([7.207] mentioned typical errors of 0.6% on the separation
and +2° on the position angle, although other groups gave more
conservative error estimates [7.201].

In principie, the fringe visibility can be used to estimate the magni-
tude difference of the two components of a binary star, but this requices
proper calibration of the system using a reference star. MORGAN et aL
[7.199] have built doubly-refracting prisms and a polarizer to enable
artifical double-stars of known magnitude difference to be recorded for
calibration purposes. It is typical of the gap between the theory and
practice of speckle interferometry that the measurement of 4m, which is
so simple in theory is, in practice, elusive.

The aim of making binary star measurements is usually to estimate
the masses of each component. For a double-lined spectroscopic binary
{i.e., one for which the radial velocities of both components are known) a
minimum of two measurements of the angular separation and position
angle yields both the masses of each component and the absolute
distance (parallax). One example measured by MCALISTER [7.193] is 12
Persei; the masses are 1.25+0.20 and 1.08 £0.17 times the mass of the
Sun and parallax is 07046 +07002 which combined with the known
apparent magnitudes gives absolute visual magnitudes of 3.8 £0.1 and
4.1 +0.1, respectively.

Binaries that are both double-lined spectroscopic and resoivable by
speckle interferometry are rather rare. If the binary is single-lined, then
speckle observations cannot unambiguously give the individual masses
and distances. However, if masses appropriate to the spectral type are
assumed, a distance can be found. MCALISTER (7.192] and MORGAN et al.
[7.201] have applied this to binaries in the Hyades cluster, a distance
marker in the universe, to confirm that its mass-luminosity relationship is
normal and that its distance is approximately 10% greater than the
original proper motion studies indicated.

BECKERS ([7.208, 209] has suggested a modification of the speckle
technique called “differential speckie interferometry” that may enabie sub-
milliarcsecond separation of binary stars to be measured on a 4m class
telescope in the visible. The technique uses the Doppler shift and
observation at two closely spaced wavelengths to modulate the position
of speckles in the short-exposure photographs; since the speckie pro-
cedure measures shifts to an accuracy of a fraction of the speckle size,
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resolution of binaries whose separation is much iess than the diffraction-
limit may be possible.

7.6.3 Single Resolvable Stars

One of the first stellar discs to be resolved by speckle interferometry was
the supergiant 2-Orionis (Beteigeuse) [7.7] which has subsequently been
observed on several occasions [7.124, 125, 203, 210~212], including the
first example of a map of a star apart from our Sun [7.124]. Whilst there
is evidence for substantial limb datkening on «-Orionis, the speckie
energy spectrum provides rather low quality data for comparison with
models. Measurements reported by Goldberg et al [7.212] at H,
wavelength and the neighboring continuum reveal a mean diameter of
07060 with an unresolvable bright feature near the SW limb in the
continuum aad significant H, emission at large distances (radii exceeding
0725). The diameter of the giant star z-Bootis has also been estimated
(7.213].

Several Mira vanable stars—o-Ceti (Mira), R. Leo-and yCygni
[7.210, 214, 215]—have been observed by speckie interferometry. These
results indicate that Mira-type stars probabiy have smailer diameters
than was previously supposed.

Finally we note that the first results of long-baseline two telescdpe
speckle interferometry have resoived the individual components of the
binary star Capella, yielding values of 5+1 and 4+2x 10~ 3arcsec
{7.216].

7.6.4 Infrared Stars

Although infrared speckle interferometry is at the moment still restricted
to a single detector across which the image is scanned, many interesting
measurements have been made. This work is likely to expand when array
infrared detectors become available.

The diameters of several protostar candidates have been measured,
particularly WS~IRS 5, MonR 2-IRS 3, $140-IRS | and the BN object
(7.169, 171, 217-219). MCCARTHY's measurements of the triple nature of
MonR 2-IRS 3 [7.219] are a good example of the results possibie with
careful data analysis. The bright carbon star IRC + 10216 has been
observed both the continuum and in the CO lines [7.220, 221]. Several
Mira variabies (7.171, 220] and the dust sheils around Wolf-Rayet stars
[7.222)] and the supergiant 2-Orionis [7.169] have also been observed.
The star T-Tauri, after which the class of T-Tauri variable stars is named,
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has been shown to be double [7.223]. Finally, object restoration via
the Knox-Thompson algorithm and image enhancement techniques
have been applied to the extended object n-Carinae [7.224].
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Photon-correlation experiments have verified the theoretical prediction of Baltes et al. [Opt. Acta 28, 11-28( 1981)|
tha: a phase grating hidden within a diffuse medium may be detected by correlation meast By ex

of this theory to the space-time domain we have additionaily verified that a simple and more reliable method of
detecting the grating, valid for arbitrarily fine diffusers. is possible by temporal autocorreiation measurements of
the scattered tield at a single point. This method is shown to vield detailed information about the deterministic
and stochastic features of the source and the source plane motion.

1. INTRODUCTION

This paper investigates the use of coherence properties in
detecting the presence of a phase grating that has been ob-
scured by an optically diffuse medium. A theoretical analysis
and complete experimental verification of two detection
methods involving photon correlation techniques are pre-
sented.

A recent series of theoretical papers!-6 has shown that the
spatial period of the grating may be determined in such cir-
cumstances by correlation (coherence) measurements of the
scattered radiation even when a simple intensity measurement
does not reveal its presence. The grating period is revealed
through the existence of sharp correlation peaks that are
present whenever one correlates pairs of the grating diffraction
orders in the far field.> The width of these peaks has been
estimated™ v by using (amplitude) interferometry. The
strength u{ these peahs as a function of diffuse scattering has
also been measured by using photon-correlation tech-
nigues.'t

An extension of Baites' analysis is made by allowing the
diffuser to move with respect to the optical axis and grating.
The spatiotemporal correlation function in this case is seen
to be a direct generalization of Baltes’ (¢ = 0) resuit. More
importantly. the spatiotemporal analysis provides an entirely
different and more reliable method of extracting the hidden
grating period through a temporal autocotrelation measure-
ment at a single point in the far field. The presence of the
grating manifests here as a cosinusoidal modulation whose
irequency is linearly proportional to the grating frequency and
the diffuser velocity. The strength of the modulation depends
on borh the amplitude correlation length of the diffuser and
the spatiai period of the grating. Therefore the characteristic
parameters of both deterministic and stochastic features in
the compound source are easily identified by temporai auto-
correlation measurements of the scattered radiation.

Previous theoretical work was phrased by using the lan-
guage of coherence theory; however, we use that of speckle
theory since the experiment is concerned with a scatterirg
problem. not a source problem. It is well known!2-14 that

0740-3222,34/04040:3-09%02,00

o

there is a close analogy between speckle and coherence. In
the present case the terminology of either may he used equally
well.

2. GENERAL THEORY

Measurements are made in the far field of the grating/diffuser
plane (see Fig. 1). Coherent illumination of the compound
source produces in the far field an array of diffraction clouds
centered on the grating diffraction orders. If the diffuser acts
as a deep random phase screen {or scatterer), the angular in-
tensity distribution of each diffraction (speckle) cloud is a
Gaussian whose angular width is inversely proportional to the
compiex amplitude correlation length L characterizing the
diffuser. The far-iield angular displacement of the respective
diffraction clnud= is inversely proportional to the spatial pe-
riod b characlerizing the grating. The parameter L/ is then
a measure of the degree of intensity overlap between these
diffraction clouds. For L b £ 0.33, the average intensity
distribution wiil not reveal the presence of the graring, as
shown in the theoretical curves of Fig. 2.

Theoretical Model
We investigate the two-point correlation function of a time-
evolving speckle intensity tluctuation produced in the far-fieid
diffraction plane by laser illumination of a diffuse object
moving with velocity v = v + v,/ with respect to the optical
axis and grating. The unit vectors £ and # define the object
plane in this notation. The diffuser is modeled as a deep
random phase screen whose surface-height probability dis-
tribution is a Gaussiar. of standard deviation 7, and has a
surtace-height correlation length denoted by 1. The diffuser
is assumed to be homogeneous. i.e.. spatially stationary in the
statistical sense.

Using :wo-dimensional notation, we express the complex
amplitude in the scattering plane as a product

UlE, 0, t) = PLE, mexpliolg, n, | TIE, m. )

where
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—
n

Pt&. 0 is a real pupil function,

ot€, 1. ¢) is a time-evolving random phase that is due to the
diffuser.

Tt£. nis the sinusoidal phase grating transmission.

[n vur case
P, m = [ texpi—1§2 + 99/ 4a?],
whete a 15 the laser-heam radius
Ti&, n) = explicisin 27 &/b)],

where 1 1s the ettective nptical depth and b is the spatial pe-
ftont of he graning ing
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olE, n, tr = o=t n = tyt)

is the explicit time dependence of the random phase.
For computational simplicity we espand the grating
transmission term in a discrete Fourier series

expliasin278/b)] = £ g.explin2xg/b), 2)
ne—a
where g, = .J,1a) is the Bessel function of the first kind with
argument « {c is real and nonnegative).

Tke correlation of complex amplitudes is defined as

Plxy, v xa va, 1) = (Llxy, v, 00U (20, ¥2, 8 + 7)), (3)

where () denotes an ensemble average. As is well known. we
may express the far-field complex amplitude L'(xy, ¥y, ¢) in
terms of the source plane complex amplitude U'(£;. m, ¢) by
means of the Fresnel-Rirchhoif diffraction formula. Since
measurements are made in the far tield of the grating/diffuser
plane. the simplifving requirements of Fraunhofer zone dif-
fraction are assumed to be satistied. that is.

ka>» 1. (3a)
R > kaZ, (3bi

where k& = 27/\ is the laser wave number and R is the distance
from the detector to the source plane. The far-field correla-
tion of amplitudes may then be expressed as a fourfold Fourier
transiorm:

Tixy, ¥y, 22 ¥2,7) = f N d&dé,
x f " dmdna(UlEr n OU*(Es, 12 + 7))

[_ 2= )

X expi— o (x1§) = xafe + yvim = yana)|- (4)
| AR

where we have ignored the unimportant phase factors and

scaiing constants. Evaluation of Eq. 14} requires that we first

evaiuate the correlation of complex amplitudes that are due

to the diffuser. nameiv. '

Cexpli@(E, m. th — @ifs na, 0 + 2D

If the diffuser satisfies our initial assumptions and is in ad-
dition optically rough. ¢, 2 \, it can be shown!5 that the
correlation of complex amplitude transmittance is approxi-
mately Gaussian of width equal to L:

(explifo(&;. m, t) = ot§o, o ¢ + P
= expt={(§) =~ Iy = v+ Iny — o — e, m B2 (5)

where

L= [2min = Loy, \|

and n is the bulk index uf tetraction within the ditfuse medi-
um. The limit ot a delta correlated source tL —0) often used
in the literature yields a correlation of complex amplitudes
[Eq. 14} that does not depend on the deterministic source
plane phase: rather it depends oalv on the source intensity.
This approximation is theretore insuificient for nur purposes,
The source caerelation of complex amoutude .- 2w
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_ i & IR E g = na = el 1E]
b “p\' | 2L ]
X {Pigy, T8 [PlSo, nad TE2)]™. 16)

A simple change of variables proves quite useful here. By
defining the sum and difference coordinates

o =ty + nel/2.

1= S n=m=

o = 181 + 82072,

<,
~
&=
-

ser

we find that
[P, n) TIEDI[PISs 0 T E)]"

= © gagmtexp[—t& + p28a)expli2win + mIg/b]

nmw—=

X exp{~t&;° + no¥V/2a%expji2min — migyibl. 17
Equation (4) now separates into four closed Fourier inte-
grals, and a straightforward calculation shows that
T(s,0.0.0. 7) = expt—|c|*7%/8a%)
T n+m
——[s/sin ty — 3

X L ga8m"exp

nmes—m= b -
A2
X exp {—“-;k‘la'-’ g=tn—mi _—l l
b
A2
X exp{—‘.’ngL'-’ s = lotn + m);} } 18}
where
_Xi*tx:_sinf +sinfy
TR T 2
and
X - x
aEng=sin01—sin82

are the angular sum and difference coordinates. sin#l; = \/b
is the rirst grating diffraction order. and we concern ourselves
here oniy with correlation measurements afung the tar-tield
x axis: hence v; = v, = 0.

Photon-correiation experiments do not measure [ directly;
rather theyv are capable of measuring a related quantity. the
correlation of intensity tluctuation. whose normalized form
in ore-dimensional notation is

lixy, e M*xa,t + 1))
{(lixy, O ]| {Tex2, 00

where [ix;, ¢) = Utxp, 6)0%xy, ).

If L a < 1. the far-tield speckle has Gaussian statistics so
that :ne intensity and amplitude correiations are simply re-
lated:

Crixy, xq, 1) =

iTixy, xs, 7f?

Crtxyxy, 71 = s jyrxg, xa, T2
iTixy, xq, 01} Ttxa, 25, 0} e
(10)
where ¥ix-. <. ) is ;ommoniv termed the compiex degree of
enherence an Sg o+ = Ubvvirtue of the Schwarz
nequaiity.

9
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3. EXPERIMENTAL PROCEDURE

The experimental setup is show: in Fig. 1. Correiation
measurements are all made in the tar field using standard
photon-correlation equipment. The detectors consist of thin
optical fibers of 50-um core diameter coupled to Hamamatsu
R928 photomultipliers. The siginals are passed through a
preamplifier/discriminator and the photon counts analyzed
by a Langiey Ford correlator that estimates the correlation
function with 128.channel resolution, each channel corre-
sponding to a time increment Ar. Typicai time increments
used in our experiment were A7 = 50-200 usec. and photon
rates of approximateiy one photon per A7 or 5 X 103-2 X 10+
sec~!, with a dark count of approximately 100 sec~!. Typical
measurement times were 10-20 sec tabout 103 samples).

Measurements of the spatial cross correlation of intensities
in the so-cailed antisvmmetric scan® (sin 8; = —sin 6. = \/b}
are estimated from the temporal cross correlation at zero time
delay.

A series of diffusers was produced in photo resist. Multiple
exposure of these plates to different speckle patterns and
subsequent development yieids an optically rough surface
whose surface-height probabiiity distribution is approxi-
mately Gaussian.!6-1° The standard deviation o, of this
distribution and the surface-height correlation length [, of
each diffuser are measured by using a Dektak profilometer
tmechanical stvlus device:. The resulting value of the com-
plex amplitude correlation length L is then determined for a
particular wavelength by Eq. 131 whenever o, 2 \. The re-
fractive index n of photoresist is approximately 1.67 at the
He-Ne wavelength \ = 633 nm. The diffusers used here give
correlation lengths of L = 1.9.1.4.2.3,2.7,3.3.6.4,7.1,and 10.3
um.

Two thin sinusoidal phase gratings of spatial periods b =
5.1 and 9.2 um were produced holographically by using Kodak
131-02 holographic film. The optical depth of the gratings
was estimated from standard intensity measurements, and

Intensily Cross Correlation |y{0, 2X/b+ Ao )l'

0 FX 3.2 0.3 2.4 3.5
Ac x10*(RAD)

’
Fig. 3. Experimental measurement of the angular width of the
cross-correiation peak in the antisymmetnc scan. » = 2\/b + Aa
versus Ao. The l/e width of this peak occurs at A= 5+ 26 X 10~}
rads. which is approximatelv equal to 1/ka. where =
He-Ne wave number and .10 = 0 3 mm s the aser-
3 1.2 %or this measurement:
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both gratings used in the experiment had an effective optical
depth of o« = 0.85. The values of the rirst four Fourier coef-
ficients are then

o = 0.826,

1 = 0.383.

2% 0.08.

g3 = 0.012,

The experimental error associated with « is less than 5%,
whereas the error in measurement of the amplitude correla-
tion length L is in the 5-10% range.

A precise estimate of the spatial cross-correlation peak value
in the antisymmetric scan is made difficult because of the
sharpness of this peak. as shown experimentally in Fig. 3.
Great care was taken in aligning the detectors. and measure-
ments were repeated on several occasions with consistent re-
sults. The sharpness of this peak may be appreciated by
considering our arrangement. For a laser beam width of 2a
= 0.66 mm and wavelength A = $33 nm. the angular width of
this peak has a predicted value® or 1/ka = 3 X 10~% rad. For
R = 2m.a0.1-mm alignment error yields only 30% of the true
correlation peak. and this peak vanishes whenever the net
alignment error exceeds a speckle diameter, which in our case
is approximately 2 mm.

The diffuser translation was effected by a continuous
rotation in the (&, n) plane. The diffuser’s relative component
of velocity parallel to the far-field x axis. v¢, is equal to 27wqr,,
where r, is the vertical displacement of the laser beam with
respect to the center of the rotation and wq is the angular
speed of the diffuser. The relative velocity v, is then equal
to 27wyt s, where r is the horizontal displacement. [tis un-
derstood here that the diffuser plane (£, n) is perpendicular
to the beam axis at all times.

For measurements involving only one-dimensional trans-
lations |t} = & (v, = 0). a variable-speed linear translator was
used that ailowed for accurate measurements of ¢'¢ and hence
the modulation period as a function of b/ve.

Experimentai vaives for the modulation strength ot the
beats in the autocorrelation function were made with 2 pencil
and a ruler after obtatning a hard copy of the correlator out-
put. It would not be diificult to measure these quantities
stectronicaily as the correlation function is being processed.
This would reduce the totai measurement time to a few sec-
onds and therefore might be practical as an information-
coding scheme.

Ua Oq 0Og

4. SPATIAL CORRELATION AT ZERO TIME
DELAY

For zero time delay. 7 = 0. the complex degree of coherence,

Eq.18) by
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.00 .
0.3 //‘
&o.20 i
0.7
0.80
< 0.5 J
n
go.«@ ,/,;_
g
S0 /
=0.20 1(_

éo.wL j

2.00 a.20 C.40 0.80 0.80 1.0 1.20

+ = EXPERIMENT wh
— = THEORY
Fig. 4. Peak vaiues of the i ity Cross corr
angles (—fp, #5) as a function of L/b (sin 85 = \/b).

tation ed at

1-6 and has a number of interesting related properties. The
average intensity, defined as [(x(, x1) 2 Tis = sinfy, 0 = 0).
exhibits broad peaks centered on the far-field grating dif-
fraction orders sin #; = n\/b. The angular width of these
peaks is approximately equal to (kL)~!. The amplitude cross
correlation in the so-called antisymmetric scan.!® ['ix,, ~xp)
= (s = 0.0 = 2sin 6,). is sharply peaked whenever sin§; =
+n\/b. i.e.. whenever one correlates pairs of diffraction orders.
The anguiar width of the correlation peaks is approximarely
equal to (ka)~! and is narrow compared with (kL)~! in sit-
uations of practical interest.

We now examine in detail a correlation of the 1 diffraction
orders. sin §y = —sin #» = \/b (thus ¢ = 2\/b.5 = 0 in our
notation). Direct evaluation of Eq. (11} appears to be a dif-
ficult task in this case: however. because of our particular
values of cthe Fourier coefficients g, and the fact that a/b >
1. it is shown that ¥(0. 2\/b) has a simple form.

In particuliar, note that the term

expi~tok2a2(e ~ (n — m)A/b}3)

2

for 7 = 2\s/b. Thus only the terms n ~ m = 2 contribute o
the sum. Further. if the optical depth of the grating s
U € a € 1.3, itis seen that the Fourier coetticients g, = /¢l
are a rapidly decreasing function of n. For our case. a = 1).85,
only the terms n = (. £1. +2 contribute significantly.
Therefore to a high degree of accuracy we may express the
normalized correlation of complex amplitudes as

Y10, 2\/b)

_ 2gogeexni 2L Wb — g1]7 + 28,9 expt—S7LY b

or normalized amplitude correlation function. is given from [g117 4 (g0l + g1 Dexpt=222L 6D
12y
. L fe == midge T . + M2
AN :'ngmexD{“zk"a' ————] }exp -kl [s - “-;,'—n——-l }
T \ b 2
11

Ss. 3 =

b2

b2

—2xlL? -2 2
l: (daliexp { s +a/2 - n.\/b)'-’” {E 18q ] %exp [ 1§~ 32 = n-\/br—‘“
- n

where s = 7/2 = 5in ", - /2 = sin fl,, and we have made use
of the tact that a. b > i in evaluating the denominator. There
is N0 oss of 2oerality here. as a/b 3> 1 for all situations of
wnression was tiest detived n Rets,

e
L.

DTG elesd

where 2.2 + 22,0 = 2 {7 1o four significant places. 'This
w5 due *o rhe generai result that



R

X

D. Newman and J. C. Dainty
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0= C =% a2 onoot 21+ 2 T JozWaqeetz)in 2 11

k= cwi-

The minus on jg|* arises from the fact that J_,(a) =
(=1)"J,te) and has the physical interpretation here that the
+1 diffraction orders are antiphased. We see that |v(0.
2\/b)| == 1 for L/b — =, which is the extreme coherent limit.
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where ~ is the normalized version of Eq. (3) with time delay
r>0ands + 72 =sin .5 = a/2 = sin > as before. We
again restrict the tar-tield analysis to measurements along the
x axis (y; = v» = 0): however, one should recall that the dif-
fuser has a linear velocity v = v¢§ + ¢4 in the object plane.
where £ is parallel to £ and 7 is perpendicular 10 . The
spatiotemporal correlation of intensities is

2
3

[vts, 0. 717 = expi=|v}2r2/4qn

T Anm(s. alexp (— —b—‘—) [s/sin #y = Yain + m)]

2

27T

T lgal%exp {-

(s +0/2 = n)x/b)‘-’l] (: |8n ] exp [- :

(s = a/2 - n,\/bﬂH

n

and |¥10.2\/b)| —= 0 for L.b — 0. which is the extreme inco-
herent limit. A piot of the normalized correlation of inten-
sities in the antisvmmetric scan | v10. 2\/b)|* against the pa-
rameter L.'b is shown in Fig. 4. The experimental agreement
is seen to be excellent. Note that. for L/b < 0.33. the far-fleid
intensity distribution is completely diffuse (see Fig. 2),
whereas correlation measurements reveal the presence of the
grating forall L/b 2 0.15. Hence there is asmall but impor-
tant range of values 0.15 £ L/b < 0.33 for which correlation
measurements detect the presence of the grating even when
simpie intensity measurements would fail. i.e.. when the in-
tensity information is hidden in speckle noise.

It shouid be stressed here that the curve in Fig. 4 depends
critically on the Fourier coefficients g, of the grating. The
range of values of L,b for which the hidden periodicity may
be revealed by either correlation measurements or interfer-
ometry? will zhen depend on the particular choice of phase
grating and must be evaluated from Eq. 111) in each case. An
exampie of this effect using a {amellar phase grating that
nullifies the even diffraction orders was worked out theoret-
icaily bv Baltes® and has similar characteristics to our case.

In principie. an amplitude interferometry experiment wiil
vietd a larger range of values for which the coherence crfect
is .oticeable because interferometry measures * directly,
whereas photon correiation experiments measure |~ [°. No
de-ailed experiment ajong these lines nas vel heen re-
purtea.

5. SPATIOTEMPORAL CORRELATION
FUNCTION

Our experiment is capable of measuring the spatiotemporal
correiation function of dynamic speckle intensity tluctuations.
We therefore present the time-dependent features of this
auantity here. The normalized correlation of intensity
fluctuations is defined by

Tis. o n]?
ITis =7 2.0, 0| Tis = 32,0, 0)]

1

ws.a o=

(14

For v > 0, the normalized correlation of amplitudes yts. 5.
71 is a complex function: hence in evaluating |v{? both real and
imaginary parts are relevant. The numerator in Eq. (14} is
seen to have the form

r34aN | & Angmts. o)

a

|vts. 0. 1|2 < expr—{c]

am
X cos[wnm 5172 + | € Anmls. Odsinfwnmisit]{? (15}
n.m
where
NN n = mi\|?
Anm(s. 0) = gngmexp {—thk?2’ |0 — —b—

1 [ in + m).\!ll
X exp {=laR2L? [s = Ly ————| 1.
Pl 2 2 b
where
27, . n<+m
Eamls) = T s/sin fg — 3

and sin 6, = \/b is the first grating diffraction order.

The spatiotemporal correlation function has the usual
Gaussian envelope!® of width ¢y = 2a/|v| within which are a
series of harmonicoscillations. For the case of an intensity
autocorrelation it is shown that the moduiation of this
Gaussian envelope is entirely cosinusoidal and is heaviiy
weignted in faver of 2 fundamental {requenrcy & = .

An autocorreiation ot intensities 1s defined as ytx .. x . 71.°
2 |%1s =sind, g = 0. 77 Sincea/db » I. we rind that

) in + mi\]2|,
Aam!5.0) = gadmexp {—‘:k-'L2 [s -y }nm.
n
116)
where s = sin ¢ defines the detection location un the tar-rieid
x axis.
By defining

K = sssinty = sind/sin 4.,

we now express Eq. 114) in a more transparent form:

[T lga|expl=¢2 K = ni2lcos{wnrtK — n)||* + [T |ga| texpf =g K = m)lsinfwnrt K ~ njl?

fyts. 0, 7if2 = expt]u|®ri'4a?)

Ty, texpl =g UK = n 1Y

T ey by -
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Fig. 3. Theoretical plots of the temporal-intensity autocorrelation
at the center of the diffraction field (s = 0, ¢ = 0). The diffuser ve-
locity is t; = 1.3 mmrsec. and ¢, = 30 mm/sec. The amplitude cor-
relation length L = 2um.anda. 0 =51 um: b. 5 = 9.2 um.

We now restrict our attention to the case =\/b < s < \/b.
That is. we consider an autocorrelation at any point along the
far-tield x axis that lies within the £ gracing diffraction or-
ders. The results obtained are. in fact. quite general. and this
merely serves as an illustration of the spatiotemporal behavior
in a particular spatiai domain. Recollecting that for our case
£ai D gy 2 gy, . . etc.. it is clea: by inspection of Eq. (17)
that only the terms n = (). £1 contribute sigpificantly when-
ever =1 S K s land L'b 2 0.05(i.e. g2 2 205, With the
above restrictions in mind. a little algebra shows that

5.0, 712 5 expr— 24ady NIK. q)
X [[gatexpt=2¢-K + gy vexp|=2¢*K + 1)
+exp{=2¢HK —- D)=l
+ Ngydgyiexpi—g K+ (K + 133}
+ 2expt—y tK? + 1K = Di*})eostwar)]. 18)

where
NiK. g1 = (ga-expt—yg2R*)
+igexpl—gith + 1] + exp{-¢-IK = DR

1s the normalization as a function of A and 4.

Caretui manmipuiation of Eq. <17V shows that the inclusion
ot higher-order terms again introduces cosinusotdal modu-
.ation whose trequencies are tnteyral muitiptes of wn. Because
ot exponentiai damping and the Fuurier coetficients g,,
however, all such rerms are smail corrections and may be
satelv dropped in this case.

Equation 118) theretore incorporates ail tr= relevant dy-
nanne teatures of the spattotemporal autocorrelation mea-
SUFEMENt S N ogr exXprerMent aic s some neresting tea-
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tures. We tirst note that, for =1 < K < 1, Eq. (18) is sym-
metric in A (i.e.. in . as might be expected, and has the
general form

fyis. 0,702
_ expt=ivi*r3/4a?)[4ig. K1 + Blg. Kicostwqr)]
Alg. Ky + Big, K)

v 119y

where
Alg. K) = Alg. =K).
B(q, K = Blq, =K.

and the explicit definitions of each are self-evident from Eq.
(18).

Thus the autocorrelation at any point along =\/b < sin 4
< \/b consists of a Gaussian envelope of temporal width ¢ =
2a/iv| modulated by a cosine of peried ty = b/v;. where v is
the diffuser's component of veiocity parallel to the far-field
x axis. Whenever ¢ty < ¢gand Btg. K) > 0. this modulation
clearly presents itself in routine autocorrelation measure-
ments. as shown in Figs. 3-7. The remarkable feature of Eq.
(18) and hence of Eg. (19} is that the period of this modulation

Q
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Fig. 6. Experi-jental measur s of the ¥ relation

function at the center of the diffraction field (s =0, g = ). The
diffuser velocity is v = 0.3 mmysec. v, = 0 1 pure transtation along §)
The ditfuser has an amplitude correlation length of L 3 0.9 um. and
ab=a32um b b =3 1um. Nuote that the period uf vscrilaiton vanes
WAl Migh degree of accuracy e the m-'lilll-l”un ~irensthn-
CraaNes da s fednced
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INTENSITY AUTO CONRELADZON
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T (SEQ
Fig. 7. Experimental measurement of the temporal-intensity au-

tocorrelation tunction at the center of the diifraction field ts = 0. ¢
= () with parameters L 5 0.9um. b =92um.a = 0.33 mm.v 2 50 mm
sec™', v, = 360 mm sec™!. Note the modulation period tn, = 1.8 X
102 sec. and the Gaussian enveiope has a 1/e time of ty = 1.2 X 10-3
sec. as predicted by theory.
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For fixed diffuser velocity v. Eq. 118) enables us to measure
the spatial period 0 of the grating by a simple measurement
of the modulation trequency x4 = 27vyb. s [requency
clearly manifests itself as a series of equally spaced fringes
within the Gaussian envelope. as shown in Figs. 3-7. For fixed
o and K. Eq. 113) allows one to measure the scattering source
term L by an equaily simple measurement, that of measuring
the reiative strength of these fringes.

Figure 8 shows theoretical and experimental plots of the
modulation strength Siy, K} against L,b for fixed scan angles
R =0and A = 1. In both cases the modulation strength
tends 10 zero for L, & > 0.3 and increases dramatically for L/b
< 0.5. aithough at very different rates. Figure 9 shows theo-
retical and experimental plots of the modulation strength
versus scan angle K for fixed L/b = 0.18.0.25.0.30. [tisclear
from the curves. and the excellent experimental agreement.
that the modulation strength is a sensitive measure of the
degree of intensity overlap L/b and therefore allows one to
estimate L for a given b to a reasonable degree of accuracy.

Figures 6 and 7 show experimental measurements of the
period of these modulations. The period is indeed seen to be
proportional to the comporent of velocity parallel to the far-
field x axis, whereas the Gaussian envelope has a width pro-
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portional to the total diffuser velocity fc3? +'v.j)V2 For
our experimental parameters a and 6. it was necessary to have
v < v, whenever the {ull Gaussian envelope was 10 be ob-
served with fewer than 10 full periods of modulation. We are
limited here by the 128 channels of correlation data in our
resolution. Figure 6 shows autocorrelation data for a pure
translational diffuser velocity Ju = ve v, = 0 and confirms our
analysis that the modulation frequency varies as v¢'b to a high
degree of accuracy.

6. PHYSICAL ORIGINS OF THE
MODULATION AND COHERENCE PEAKS

Figures 3(a) and (b) show how the modulation of the Gaussian
envelope exp(—|vj27/4a?) increases dramatically tor L/b <
0.5 and essentially disappears for L/b > 0.5. This may be
understood by considering a diffuser correlation cell of linear
dimension L traversing the phase grating of spatial period b
and noting that the phase grating is uniform in the 7} direction
and periodic in the § direction. Whenever L/b « 1 the in-
stantaneous random phase associated with a particuiar dif-
fuser element has added to it a periodic component that is due
to the grating. This gives rise in the far field to a strong co-
sinusoidal modulation of period b/v.. As L increases. the
diffuser element still has a periodic component added to it:
however. the strength of the component is now smaller since
it is the value of the phase of the grating averaged over a dis-
tance L. thus the modulation disappears as L/b — ».

The Gaussian envelope of width ty = 2a/e) is a well
knowniS property of dvnamic speckle-intensity correlation
measurements. [t may he understood in a somewhat ele-
mentary way as the time taken for a speckle in the far field o
evoive into an essentially new speckle with no memory of its
previous configuration. The speckle field evoives because of
the motion of the diffuser with respect to rhe laser beam.
After a transiation of a laser beam width (2a). the dirfraction
{leld s furmed by an entirely diiferent set of scatters: hence
the decorrelation :ime of each sneckle in tha far field is ap-
proximately 2a.1¢:.

It :s instructive to view the spatial cross-correlation peak
in the antis) mmetric scan and {5 2ssociated Wiath in terms
of speckie phenomena. Our evperiment measures the nor-
mailized correlation of speckie intensity fluctuations, and this
has a vaiue of one for an autocorrelation. Figure 4 shows that
the normalized cross correlation is also equal to | when nne
is correlating the =1 diffractionordersand L. b 2 1. Asshown
in Fig. 2, wrenever L.b Z 1. the diffraction fieid consists of
identical and weil-separated speckle patterns whose intensi-
ties at the £1 diffraction orders are identical because of the
cnoice of grating. Correlating the %1 diffraction orders then
vields the same result as an autocorrelation of either of these
since the detectors are fixed on essenually the same speckle
of identical intensity.  As L. b is reduced, the neighboring
speckle patterns uveriap the =l Jiffraction orders. The
correlation peak therefore decreases as the far tield becomes
more diffuse. Le.. the signal-to-noise ratio is reduced.

The spatial width of this peak has a measured value of Ax
= 2R ka see Fig. 3), which 1s approximately 2 speckle di-
amete:. “Whenever the net alignment error of the detectors
exces s 1 speckle didmeter. the detectors are tixed on two
iifiprant specaies: nenve the correlation peak must vamsa,

D. Newman and -I. C. Daints

CONCLUSIONS

We have verified experimentally that the presence of a si-
nusoidal phase grating of period 5 hidden behind a diffuser
of correlation length L can be revealed by measurements of
the spatiai-intensity cross correiation of the scattered fieid.
confirming the theories presented in Refs. 1-5. By extension
of this theory to the space-time domain. we have contirmed
our own analysis that the hidden periodicity of the grating is
more easily measured by a temporal autocorrelation of the
dynamic speckle fieild. The presence of the grating in this case
manifests itself as a cosinusoidal modulation within 3
Gaussian envelope. The period of this modulation is inversely
proportional to the spatial period & of the grating. It has been
verified that this effect is easiiv measured for highly diifuse
fields 1L/b << 1) by using a single detector with minimal de-
mands on the spatial orientation of the detector. in contrast
to the spatial cross-correlation method.
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REF, 11

Variable threshold discrimination in a photon-imaging detector

Thomas Gonsiorowski

The photon statistics of a particular photon-imaging detector are studied. and the conditional probability
of photon counts in the output given a certain number of counts in an associated reference channei is de

rived. This resuit is applied in a variable level discrimination technigue which significantly reduces detec-
tion errors approaching the ideal limit. These resuits can be applied to other photon-limited detectors with

nonideal pulse height distributions.

. Introduction

The photon-imaging detector which we are currently
constructing is a modified version of the device first
described by Papaliolios and Mertz.! We have named
this device the Space-Time Analvsis Camera (STAC).
The STAC is designed to detect the spatiotemporal
coordinates of a photoevent. i.e.. the interaction of a
photon with the photocathode of an image-intensifying
tube. Before embarking on the statistical analysis of
the STAC, we describe its operation. After presenting
some general results in Sec. II we will consider a stan-
dard approach to photoevent discrimination using a
fixed discrimination level. Finally, in Sec. I\ we con-
sider a variable discrimination technique suggested by
Papaliolios? which improves the detection statistics.

The STAC consists of five major components: (1)
the image-intensifier tube: (2) the multiplexing optics;
¢3) the image plane masks; {4) the photomultiplier tubes
{PMTSs); and (3) the discrimination electronics. The
image tube serves to amplify the optical signal from a
photoevent producing a pulse or light containing many
photons vet retaining the spatiai location of the original
photoevent. The multipiexing optics form multiple
images of the intensifier output face: in all. seventeen
images are produced. each containing a fraction of the
photons emitted by the intensifier. Itis important to
remember that each image is a small spot of light cen-
tered on the original photoevent location. In the fol-
lowing analysis we ignore channel to channel variations
of the imaging properties and assume that all seventeen
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images are statistically identical. i.e., each image con-
tains the same average number of photons. We do not
ignore the aberrations of the optical system but simply
assume that the image spot can be represented by a
Gaussian point-spread function.

To encode the image spot location, a high-contrast
binary transmittance grating is placed over each image.
The period and orientation of each grating or mask are
chosen to encode a particular bit of the digital photoe-
vent coordinate. Eight masks are used to encode the
x coordinate and eight are used for the y coordinate.
The finest mask has a period about equal to the FWHM
of the optical point-spread function and the period then
doubles in each successive mask up to the coarsest mask
which is half transparent and half opaque. The four
coarsest masks are shown in Fig. 1. The seventeenth
channel has no mask and serves both as a timing refer-
ence and event trigger, and in the variable threshold
discrimination scheme this seventeenth channel also
serves as a reference for the adjustable discrimination
level. Tocomplete the encoding. ail light transmirzed
by the mask is collected by a photon counting PMT with
a fast preamplifier/counter registering the number of
detected photocounts. The final encoding step is to
decide based on this number of counts whether the
photoevent fell over an opaque region of the image plane
mask (and hence the digital bit is assigned a 0) or over
a transparent region (digital bitis a 1).

[t is in this final step that some discrimination must
take place. The number of counts registered in each
channel will be a random variable with a statistical
distribution determined by the characteristics of the
various STAC elements. The form of this distribution
will determine how effectively we can discriminate be-
tween a blocked event and a transmitted event.

. Modeting the STAC

In an ideal system. the image tube would produce a
fixed number of photons in the output puise for each
photoevent. and the optical system, masks, and PMTs
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Fig. 1. Four coarsest masks of the STAC would encode the four most
significant bits of the digital x coordinate. Note that Gray code s
used as opposed 10 binary to minimize muitibit errors.

would also give a fixed output depending only on the
event location. [nsuch a deterministic system it would
be an easv matter to decide on the digital coordinate.
and errors would be eliminated. Unfortunately. nature
is not so obliging: at best the image tube produces not
a fixed number of photons but instead a random num-
ber .N with some probability p1.V).  Also, each succes-
sive stage of the system behaves in a probabilistic way:
if .V photons enter a stage. rather than a fixed fraction
emerging, the number output .V’ again has some dis-
tribution pi.N"! V), which does. however. depend on the
input number. Ultimately, the number of photocounts
registered in each channel n will also be a random var-
iate with a distribution p(n): as a result, any decision
method which we use to select the various bits in the
digital coordinate will err for some events, assigning a
1 instead of a 0 and vice versa. Thus. in the real svstem
we must ask. what is the probability of making an error
in the event coordinate?

In modeling the svstem we consider two possible
distributions for the number of photons emitted by the
image tuve: ' 1) p.V1 is Poisson.

NN
otNy = v expt—=:N)). '
and 12) p{N) is Bose-Einstein.
. NN
Ny = m - 12)

In both cases. «.V) is the mean number of photons
produced bv the image tube for each photoevent. The
Poisson distribution represents the optimum realizable
distribution. t.e.. the realistic ideal case. while the
Bose-Einstein distribution approximates the actual
image tube we are using. The Bose-Einstein distribu-
tion can be considered as the convolution of the ideal
Poisson statistics with a broader noise distribution
which increases the tluctuation of the photon numbers.
Each successive stage of the STAC performs a binomial
selection on the input to that stage

e e

2NN = :} TN - TW=Y, 3

where T is just the intensity transmittance of the stage.
Another reason for selecting distributions (1) and (2}
is that both are invariant under binomial selection. i.e..
the form of the distribution does not change although
the mean is modified. The transmittance of the mul-
tiplexing optics is T, the masks have a transmittance
T, which is position dependent. and the PMT
preamplifier/counter combination has some effective
efficiency itransmittance! n. To obtein numerical re-
sults. it will be necessary to choose values for these pa-
rameters: we will use approximate values for our par-
ticular system:

<N =350 X 104,
To= 11X 1074, 4}
7 =015

Also. a derived quantity which will appear frequently
is the mean number of counts generated in the reference
channel. i.e.. without any mask.

(ry = nTodN) = 8.3. (31

Although the exact values of these parameters does not
affect the following analvsis. some results do depend on
their relative magnitudes.

As mentioned above. we model the optical point-
spread function by a Gaussian function. The mask
grating integrates periodic portions of this point-spread
function resulting in a total transmittance T'» given
by

= 1 2k ,
Ta= © = f exp{—rx — x9}¥/20%dx| . {6)
el 2w

where x, is the centroid of the image spot. 2\ J7 is the
FWHM of the point-spread function, w is the width of
a bar or space in the mask. and & is an integer. In re-
ality. the limits on the sum shouid be finite since the
mask has a finite extent: in practice. however. the
point-spread runction will become negligibie before the
mask edzgz is reached. Of co -his does not apply to
events very near the edge of the fieid. but we will ignore
such cases. To simplify the above formuia. we define
two dimensionless parameters

Because of the mask periodicity. the normalized event
position s has a fundamental range —1~» < s < lb; while
the mask-spot ratio « hLas approximate values of 1, 2,
4.... 128 in our system. Introducing the error tunction
and using s and « we can write

Tmis.ar =2 S ertli2k =5 =~ Laj —erfhi2k = 5. %)
e

Figure 2 shows the variation of T, with s for various
values of «. For low mask-spot ratios (¢« = 1). the
point-spread function covers several mask periods
producing a poorly modulated transmittance function.
But as « increases. the transmittance approaches a step
P dprit "984
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Fig. 2. Tats.a) plotted over the fundamental range of 5 for a = 1.

4. and 64.

function. The poor modulation of T, for smaller
results in larger detection errors. thus ultimately lim-
iting the detector resolution.

IN. Fixad Threshoid Discrimination

Consider the output of a particular masked channel
of the STAC which consists of a series of counts
n,Na,. .. "y Foreach count we must decide the event
location—was it over a space or a bar? The simplest
decision method is to choose some threshold value n,,
and whenever n, > n, we assign the event to a space 10
<5 < lh), otherwise the event is assigned to a bar (~14
< 5 <O). Since the number of counts n is random for
any position s, there will be a probability of incorrectiy
assigning the event location. Given the probability
distribution of counts p(n). the probability of assign-
ment error is
for =15 €5 <O

ptn < ngp, for0<s £ 15
Note that. for each vaiue of 5 and each mask. the dis-
tribution ptn) will be different since it depends on the
mask transmittance 7,. Having no a prior! informa-
tion about the event location, we will assume that all
positions are equally likelv allowing us to spatially av-
erage the error

pin 2 n),

E(sy= "9

Eq = iptn 2 n,)),, fors <0:

Ei=ptn <np))y.fors 200 110}
1
E= ;on +Ey).

In choosing n, we must minimize £. However, there
ts another constraint: if the difference between £, and
E is large. we introduce a bias into the measurement
in that a disproportionate number of events are assigned
to either bars or spaces. This would cause a spatially
uniform input signal 10 produce a striped output pat-
tern. 3o we must aiso minimize the bias, which can be
characrerized by
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Fig. 3. Typical variation of bias B and error £ with threshold n, for

the mask-spot ratio o = 2.

B =|E;~Ey (11

As we will see, choosing n, to minimize B will also tend
to give a minimum E.

From the arguments of Sec. 1. we know that pi(n) will
be of the same form as p(.V), the distribution of photon
number emitted by the image tube. but having a mean
given by

(n) = Tmir) 12y

Once we have tabulated T, vss and «, it is easy to nu-
merically evaluate 3 and E vs n, for the cases of Poisson
and Bose-Einstein statistics. Note that B and E will
be different for each mask-spot ratio «. The plots in
Fig. 3 show typical results of this analysis. For both
distributions we see that an optimum threshold which
minimizes the bias or the error exists. Although room
does not permit. inspection indicates that for most
values of a the same thresnold minimizes both. The
minimum error and bias obtained for each mask is
plotted in Fig. 6.

IV. Variable Threshold Discrimination

In an attempt to reduce the probability of detection
errors., we consider making a second simultaneous
measurement for each event—besides counting the
number of photons in each masked channel. we also
measure the numbper of counts in an unmasked refer-
ence channel which has a position independent trans-
mittance. Tm = 1. We hope that the reference channel
measurement will give us added information about the
number of photons produced by the image tube for a
particular event. therebv decreasing the probability of
detection errors. Now we ask. what is the conditional
distribution of counts in one of the masked channeis
pinjr) given that we hive measured r counts in the
reference channei?

We begin by noting that. if in a particular event the
image tube produces .V photons 'not a random num-
ber), the probability of producing r counts in :he ref-
erence channel is just a binomual distribution




N
—’) T L =Ty =" forr € NV,
113}

oriNy = ‘_r N .
0. forr > N.
Since we also know both ptV) and pri, we can apply
Baves's theorem to tind p(.N|r), which is the distribu-
tion of photon output by the image tube given that r
counts are measured in the reference channel. From
Baves's theorem.?
o2iriNIpt N
prs ’

2INlF1 = (1)

3 =nToTm. 20
Combining Egs. (18) and t19) gives
plmr»:.v;\vo(:} BLIDY —31-""ﬁexp|—ul 21
with
Ny = maxia.r). 122)

After some manipulation the sum can be transformed
to the confluent hypergeometric function® giving

r
. n
ownry =

n=r

in-r)

) (1= 3137 expr=uwiMlr + Lr =2 + Ll = 3],

r.
r.

WA

n
n

3nexpl—wIMn + Lin — r + Ll = ),

Equation (13), the formula for pir|.V). also applies to
the output of any masked channel with r replaced by n
and T replaced by TyT». Given both p(n|N) and
21.¥|r), we can find p(n|r) from

pniry = T piniN)piNjr. (15}
N=o

To facilitate numerical computation we apply Kum-
mer’s transformation®

Mia:p:z) = expiz)M(b ~ aib: = z). 24

which reduces the contluent hypergeometrics in Eq. (23)
Lo terminating series or polynomials:

(r\ 321 ~ @Y=" expt= ud M- n:r = n + Lnd = D).
n

oinlry =

(udn="

tn—=rit

n ri
n

WV A

r

expt— ud)3" M- rin —r + Llzad - L},

Once we have found pin|r) we are again in a position to
consider choosing n, to minimize B and E. However,
n. is now a function of r, having a different value for
each r: but since we know the unconditional distribution
of counts in the reference channel p{r), we can average
over r to obtain a single bias and error figure for each
mask~spot ratio.

Consider tirst the Poissor: case. where p(.N) and p(r}
are each Poisson distributions with respective means
-Nyand ‘ro. Apopiving Eq. {11) we obtain

HEREY ST YT e .
————— 2D = ‘N)) forr < R.
2Nl =
: forr >N\
[
' t16)
Detining
a=l=nTyNo = N =r, i1

this becomes

Nar
— expt—~ul. for.V 2r,
FIRAITE R SRV AL

0.

118)
for N <r.

The binomial distribution p1n1\V) can be written as

N
JHi= 3 <N,
pinl N = \n)i i-3 forn

t19y
forn > .N.

0.

where

Although this result is exact. it offers little insight to the
advantage of the reference channel measurement. For
our particular svstem, however, we can approximate the
formula by noting that

u»l 3« landutl = =u>» 1 126)

For the confluent hypergeometric function we use an

asymptotic approximation®

Tth)
Miaigizr = —— exprzrze=?1L + Oz 7h), 127}
Tiar

noting that {z]~! =2 X 10~3. Scrorisingly. within this
approximation we :ind
noa
Jinir T ——expi= 7 4, 128
al

where (n) is given in Eq. 112). this result being valid for
all values of n and r. Numerical computations using
both the exact and approximate expressions show the
approximation to be accurate within 10~*. The ap-
proximate formuia shows quite clearly that. for Poisson
statistics, the measurement in the reference channel
gives us no new intormation. and thus the variable
threshold technique wouid be fruitless. This resuit
seems quite reasonabie and suggests that the exact ex-
pression 125) should reduce to a Poisson for all vaiues
of u and 3. but we have not proved this except in the
limit [Eq. 126)].

For the Bose-Einstein distribution of photons emit-
ted hv the image tube. the probability of having .V
photuns produced by the intensifier given r counts in
the reference channel is

“Agni "984 vor 22.Mo. T APPLIED CPTCS *c63
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where u is given in Eq. (17). Now the probability of -t
receiving n counts in a masked channel when the image al + %
tube produces .V photons is still given by Eq. (19), 2 + S a
thus a4 a o
a
LA ARTAY L Y I T S + 0
ownjry = T )l )an — JiNmn _1_;“.\-»' 130 2 - a
Navo \n/ir BRI -l [} a
where again Vg is given by Eq. (22). This sum can be E at. a
transformed into the hypergeometric function® resulting r a +++ o
in a conditional probability distribution L a ++++ a,
g a
1+ )]t ,..gu . s H :It&u......
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n L+ eV Pulse count
- - a1 -3 <r Fig. 4. Comparison of the unconditional Bose-Einstein distribution
XFir+lr+lr~-n+l: ,14 n s ba o €
1+ and the conditional or modified Bose-Einstein distribution for r =
L - il 0.75.
= (") 3riudn=r gt Wand T =055
r! (1 + (Nym+! . . . .
a1 = 3) pln|r) as given in Eq. (36) is a proper conditional
XFln+la+Lln-r+l v " zr i31)  probability. Comparison of the exact and approximate
T

“t

As before we can transform the hypergeometric function
to a terminating series with the transformation®

Frabiciz) = (1 = 2)¥79"0Fic = g.c — biez), 32)
which leads to

(L4 ()P UL+ (N

Ir
ir= 371 = 3vy-n
aumlr (nJ A+ (r) + udyrenrt

xF

utl = 3)
“n-nr-n+ li=————|. n<r
1+ (N

1A ))THL+ (NY)

n
= Jriudn=r
(r) “ W )+ pdrenst

1-43)
X F —n—r;n-r+1:m—- - {33)
1+ V)
Using the reiations in Eq. {26) we discover that
-3
wmlod i34)
1~ .\
suggesting use of the relation?
R Fic)lic =a - b)
Flabie:l) = ! 135

Tic-aTic=b6)
which is valid for B¢ -~ a — b)) > 0 and ¢ =
0.-1=2..... From Eq. 133), we see that¢c ~a — b =
r+n + 1isalways positive, whileforallnand r;c 2 1.
With this approximation, the conditional probability

reduces to
r+a) L+ )T
pmm:( )-_(—L 136}
LRI N Y adad

where ¢n: is given in Eq. (12). this formula holding for
all values of n and r. Although this result is only an
approximation, it has all the properties of a true prob-
ability density and

. (nyn
S NPIDIF) B ——————— (3‘7)
:..p e (1 + (n)m*i

when ptr) is a Bose-Einstein with mean (r). Thus,
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formulas again shows excellent agreement. Henceforth.,
we shall call the distribution [Eq. (36)] the moditied
Bose-Einstein or MBE.

The significance of the MBE is vividly demonstrated
in Fig. 4. which compares the MBE obtained by in-
cluding the reference channel measurement to the un-
conditional Bose-Einstein distribution. Clearly the
MBE is much narrower, a result which can be formally
shown by calculating the ratio of the variance to the
mean for each distribution. Letting (n.) represent the
mean of the MBE, we find

2
MBE: “—=1+:n>-l

)
)(n).
(n,) 1+¢(r)
2

Bose-Einstein: :'—) =1+ ). 138)
Poisson: 0—2 =1.
{n}

clearly showing that the width of the MBE is hounded
by the Bose-Einstein from above and by the Puissun
from below. Thus, including the reference channel
measurement does add information. and we can con-
sider (r)/(1 + (r)) as a quantitative measure of the
improvement.

To see how much of an improvement the MBE gives.
we consider the error and bias analysis as in Sec. I1. In
this case, however, there is a different optimum
threshold for each value r and each mask-spot ratio o
as shown in Fig. 5. As one would guess. the threshold
rises with increasing r since larger values of r imply
larger image tube output pulses which also give higher
counts in the masked channels. Thatn, = r/2 is in-
dicative of the spatial averaging used to compute n.,
since the averaged transmaittance of the mask is just ».
Figure 6 compares the bias and error figures for the
three cases: (1) Poisson 5tatistics with fixed 1or vari-
able) threshold: (2) Bose-Einstein statistics with fixed
threshold; and (3) MBE statistics (i.e.. Bose-Einstein
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Fig. 6. Comparison of the three discriminativu schemes presented
in the text.

with variable threshoid). In case i3) we averaged the
results over r with p(r) being Bose-Einstein. For all
three cases. the error is very large for the mask-spot
ratio & = 1 due to the poor mask transmittance modu-
lation but quickly improves as « increases. ' Variable
level discrimination improves the error (compared with
the Bose-Einstein case) for all mask-spot ratios. most
notably for intermediate vaiues @ = 2, 4.and 8. [t also
decreases the bias for most mask-spot ratios and sur-

prisingly results in very small biases for « = | and
2—surpassing even the Poisson case. Clearly. variable
threshold discrimination significantly improves both
the bias and the error oifering performance which ap-
proaches the Poisson iideal) case. This improvement
results because variable level discrimination removes
the large fluctuations in photon numbers partially re-
covering the ideal pulse height distribution of the
system.

V. Conclusion

We have presented a statistical analysis of a pho-
ton-imaging detector which uses a mask structure in the
image plane to encode the digital coordinate of a pho-
toevent. The distribution of photocounts at the output
was derived both unconditionally and conditioned upon
counting r photons in a reference channel. The con-
ditional case allows the use of a variable discrimination
level, which depends on the value of r. That this con-
ditional distribution is at least approximately un-
changed for the case of Poisson statistics indicates the
optimum nature of this distrioution. However. for the
broader Bose-Einstein distribution. the conditional
probability affords considerable improvement. Al-
though the particular formulas obtained herein may not
apply to other detectors. we feel that the general concept
of a variable threshold could prove useful in other
photon-counting devices where improvement of the
pulse height statistics is desired.
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TESTING FOR UNIQUENESS OF PHASE RECOVERY IN TWO DIMENSIONS
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The uniqueness of phase retrieval for two dimensional sampied functions of finite extent is equivalent to the irreducibil-
ity of their z-transform. We put forward a method of characterizing the uniq (or non-uniqueness) in the ab: of
noise based on a theorem that gives a necessary and sufficient condition for irredudbility of univariate poiynomials over fi-

nite fieids.

[t is well known that the question of uniqueness of
phase recovery for sampled functions is equivalent to
that of the irreducibility of the polynomial which
represents the z-transform of the object samples [1,2
{“i;‘} (i=0,1....m,j=0.1,..,n):

m.n
Fzy,29) = > a;z42h. (09}
ij=0

It has been shown that the set of reducibie poly-
nomials in more than one variable is a set of measure
zero [3] and also that irreducibility is stable in the
sense that 1 i not sensitive to arbitrary but small
noise on the coerficients (4].

The only means available so far of testing for
uniqueness has been to use many random starts in any
one of the iterative methods of phase retrieval [5,6].
Only for a special class of objects. those that satisfy
Eisenstein's [7] irreducibility criterion, has phase
uniqueness been established (8. Since this criterion
puts forward a sufficient but not necessary condition
for the irreducibility of (1), there may be many other
polynomiais that do not satisty it that are, however.
trreducible. [n this letter we propose a method of
testing for irreductbility in the case in which the co-

! On leave from: Instituto de Optica, C.S.1.C., Serrano 121.
Madrid 6, Spain.

2 Permanent address: Blackett Laboratory, Imperial College,
London SW? 2BZ, England.
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efficients a;; are not perturbed by noise. This ideal
noise-free situation will be useful in those cases in
which phase-reconstruction algorithms are to be in-
spected for digital objects; since in this case the test
of irredudibiliny can provide a priori information on
the extent of the expected ambiguity in the recon-
struction. Also the study of noise-free cases has an
interpretative interest of the problem.

Since we shall be intercsted in distributions (1) cor-
responding to digital pictures, we shall assume the co-
efficdents a;; to be non-negatrive in.cgers in the noise-
free situation (or even when noise is weak enough to
give no ambiguity as io the value of the last digit or
the coefficients g;;).

Writing (1) as 2 polynomial in the main variable z,
with the coefficients being polynomials in z,:

F(z),2)) =P 2)2] # Doy (z 2]~ 4 -

*p1(29)2) * polz3). )

Fl(z), 24) is monic with respect to z, if its leading co-
efficient p,u(z7) = 1. Az, 2,) is primitive in 2, when
the p,(z,) are relatively prime. If F(z, z,) is not pnm.
iuve, the content . cont {£), is the greatest common
divisor (ged) of the coefficients p{z,). The principal
part of F(2),2,) with respect to z is then defined as
ppIF] =F[ccat[F). Starting with a non-monic poly-
nomial, such as (2) with p,(z5) # 1, * is always pos-
sible to construct the following monic solynomial (9}:

00304013, 54 30330 2 Elsevier Science Puoiishers B.V.
(North-Holland Phyvsics Pudlishing Division)
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-

G(zy.29) = [pm(22)]m'lF(Zp,Pm(Z:)-L'g)- [€)]

If the complete factorization of the monic polynomial
(3) into irreducible factors Gp(z2y,25) is

r
Glzy.22) =k[ll Giz1.2). @
then it may be shown [9] that

r
F(=|‘=z)=kq) {pp(Gr(Pm(zazy. 201 T (3

Thus, we may assume in the following that £{(z,, z3)
is monic in z, since otherwise eqs. (3)—(5) reduce to
the situation of factoring a monic polynomial.

According 10 a well known lemma by Gauss [7],
factorization of a2 polynomial with rational coeffi-
cients is equivalent to that of a polynomial with in-
teger coefficients (this is seen by multiplying the
polynomial with rational coefficients by their least
common denominator).

Proposition 1: The factorization of Fiz), 24) is
such that if it has a factor Fy,(z, 25} with complex
coefficients then it must necessarily have another fac-
tor Fy,. (2 1+ 23} whose coefficients are the complex
conjugates of those of Fipz}, 23).

Proof: Let us write F in the x and v variables fac-
iofized as:

r
Fix.xy= ka(x.,\'; ) ﬂ Filx.y).

A"-'Nm

The compiex conjugate of F{x, ) is:
r
Frxpy=Fp (x. 11 Fpen.
m k=ky,

Since Fix, ¥) has real coefficients Fix, y) = F*(x.v):
ie.:

Id r
Fr (x. n Frx.v)=F7 (x, ﬂ Fx.»).
3¢ y)k’km Kx.y)=Fg (x y)k-k.,, x.»)

The above can be possibie only if the product
T w kyy Fi(%,¥) contains the factor FZ(x.5), which
also means that the product [T}, 4. F*(x. y) contains
the factor Fi,,(x, 7).

This proposition is a generalization in two dimen.

e,
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sions of a well known theorem of aigebra for uni-
variate polynomials according to which a polynomial
with real coefficients has roots in complex conjugate
pairs.

Proposition 2: There is a unigue monic polynomial
Fiz}, 25} with integer coefficients, irreducible over in-
tegers, witht a given factor Fi,,!2 . =) with irrational
or complex coefficients, and everv other polvnomial
with integer coefficients containing the same factor
Flend 2. 22/ is amultiple of Fiz,, z,).

As will be seen. we shall call F(z,.2,) the minimal
polynomial with integer coefficients containing the
factot Frpylzy, 23).

Proof: By ordering on the set of degrees of poly-
nomials with integer coefficients containing the factor
Frem(21,27), there is 2 monic polynomial F{(z,23)
with smallest degree. F(z, 24) is irreducible over in-
tegers since otherwise £(zy.24) =421, 2)B(zy, 21)
both A and B with integer coefficients. But then either
A or B has the factor Fj,,(2y . 23) which is a contradic-
tion with our assumption that F(z}, z5) has smallest
degree.

Let G{z{.z4) be any polynomial with integer co-
efficients with Fi,(z).23) as a factor. By the division
algorithm [7]:

Glzy.29) = F(zy, 2 QUey, 73) +R(2y,29),

with R having lower degree than £. From the assump-
tion on G and £ it follows that also R has £, a5 2
factor. thus R must be zero since it was assumed that
F has the lower degree amongst the polynomials with
Fpm as 3 {actor. Theretore G is 4 multipie, over in-
tegers, of F.

Proposition 2 is a generalization for two dimen-
sional polynomials of another well known theorem of
algebra for univariate polynomiais [e.g. 7], according
to which there is 2 unique monic polynomial with
rational coefficients having a given algebraic root and
being irreducible over rationals. The generalization of
these propositions can obviously be made to any di-
mension.

Before quoting the main theorem that characterizes
irreducibility, we first establish the foilowing facts:

Fact 1: The factorization of Fiz, 25/ with orginary
integers ay; into r irreducible factors Fifzy, 23) is such
that the coefficients of these factors are ordinary in-
tegers. Thu: the factorization may be considered over
integers.

s
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To see this we observe the following:

First, if we admit decomposition into factors with
some compiex coerficients. they will appear in com-
plex conjugate coefficient pairs. Flipping factors with
such coefficients has to be done in those pairs since if
one flips one factor of the pair only, according to
Proposition 1, the polynomial built will no longer
have integer coefficients and thus cannot be considered
representing 1 valid object under our assumption of
absence of noise. Of course, pairs of complex conju-
gate ractors combine giving higher degree polynomuals
with integer coefficients.

Secondly, if we admit 3 decomposition with factors
having some irrational coefficients, flipping some of
such factors and leaving others unflipped will lead to
a new polynomial with some factors of irrational co-
erficients (those untlipped) equal to those of the old
polynomial, i.e. before flipping some of them. Ac-
cording to Proposition 2 that new polynomial built
after flipping cannot have integer coefficients as well.

Eg.. the object F(zy,25) = :% + 92-2_, + 8242y ad-
mits the factorization (2, + (4 +/T)z4(z| + (4
~/T)2;). However. none of the possible objects ob-
tained by flipping any of the factors has integer coef-
ficients. Flipping the second factor. for instance.
wouid vield the object Fzy.25) =(z; + (4 + /7 1z5)

X (224 (4 =/Tu)) = (4 —\/7)2% + (3 +VNrd £ 10225.

Fact2: Let ged (Fizy. 230 3F/02)f = DIz} 2 v);
then F has a repeated factor w2y, 2,j if and only if v
divides Diz, = ,j and F'D is square-free.

For exampie. 1f Fizy, =+ = v¥z 2wz oy a
being an wnteger greater than 1 and v and w not neces-
sarily irreducible, then 5F°52) = ava~!wdysdz, +
v*3wjdzy, 50 that D(z |, z5) =v*~! and F/D =uw. If
D =1, then F(zy, z5) has no repeated factors. Other-
wise the factorization of F is speeded up by studying
that of D and F/D separately. The process may be
repeated.

Fact 3: 4 polynomial in one or more variables
which has a certain factorization over integers into r
irreducible factors has an equivalent factorization
modulo q" {n being a positive integer and q a prime
number and such that with respect to some varigble
the degree oy the polvnomial is the same as over the
integers) with at least as many factors. In addition,
the arithmetic operations are conserved when passing
from the fieid of integers to the finite field of integers
modulo q™ [ 10/
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For instance. the univariate polynomial 21=% +
5203 #2422 4 974 25 (2 + 201 + 3zN1 #2470
over integers, whereas modulo 2 is factored.as ¥ +z =
(1 4.0 +2 +22) and we note that 2124 + 3223 +
2472 +9: +2=2% + 2 (mod 2),z + 2= z(mod 2);
P+3z=1+z2(mod?2); 1 +2+722=1+2+2(mod
2) (the sign = denotes congruence). On the other hand,
the polynomial z3 + 217z + 1162 + | is irreducible
over integers, whereas modulo 5 becomes

2421722 1162+ 1223+ 2224 7 + 1 (mod 3),

3224741223+ 32 - 1)z + 4) (mod 5).

As a consequence, in order for a polynomial to be
irreducible over integers, it is sufficient that it be ir-
reducible modulo some q"" which conserves its degree.
Obviously, the higher n or q, the more likely it is that
the polynomial has the same factors modulo ¢” as
over integers. The condition that the polynomal has
the same degree over integers and modulo ¢7 is very
important. For instance, 523 + 3022 + 47z + 6 =
(z + 3)(5z% + 15z + 2) over integers, whereas modulo 5
becomes 2z + | which is irreducible.

We shall now quote the theorem with which the ir-
reducibility of F(z,, z5) can be established.

Theorem [i1]: Let F(z) =z™ +p,, 2™ L+ .
+p.2 + pg be a univariate polynomial in 2, with coef-
ficients being in the finite field of integers modulo q
{q is a prim.2) and such that F(z) is square-free (or has
repeated factors all with the same multiplicitv ), then
Fiz, Is irreducible over q if and only if the matrix

A, =851, (i=0,1,..m=1,=0,1,..m=1)

(6)

has rank s equal to m - 1. The elements A;; are de-
fined by the congruences:

-1
#0= I agd (modF)  (=0.1..m = )(7)
=

and 55,- is the Kronecker delta. Moreover, if F{z) is fac-
torizable into r different irreducible factors with the
same multiplicit;., then the rank of the matrix (6 is
ssm-—r.

The first row of the matrix A is always (1,0,0....0)
representing 20 (modulo F(z)) which is 1. The second
row corresponds to 29 (modulo £(z)). In general F
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(mod F(z)) is determined as follows. If
Abig bzt th gy, 2" (mod F2)), (8)
then

P A RN PR L Y Nt

Sbigr+ by g™

*0im1(—Pm- l‘m P - =P1Z = Py)

Zbieyg * i t et bpey e 2™ )
where
biayj=bij-1 = bim-1}- (10)

The recurrence refation (10) may easily be imple-
mented in a computer; b; _,; is considered to be zero
so thatb; ;g = =b; ;1P (Note that analogy of
the polynomial Q( ;) obtained from a minor of
order m — 1 of the matrix HA,-,- - 8,-,-II being different
from zero with the polynomial @ # O quoted in ref.
(1)

In general, no matter how lasge the degree of the
polynomial is, it is possible to find in practice a small
integer ¢ such that the rank of I14;; -8\l ism - 1

if the polynomial is irreducible over mlegers. However,

one should be aware that some pathological cases
exist [12]; for instance, there are polynomials irre-
ductble over integers but reducible modulo every
prime.

To test the irreducibility of a two dimensional

' poivnomual like {1). we procesd as follows:

1) Reduce F(z{,23) to a primitive polynomial.

2) Check whether F(z), 2;) has repeated factors
according to Fact 2. If D(zq,29) # 1, the polynomial
is of course reducible.

3)If D(z1,25) = 1, then fix a value of 25 =24 50
that the degree of F{z}, zg) is the same a5 the degree
of F{z,.z,) and Flzy,2,) has no repeated factors.
According to Fact |, zo may be an integer.

4) Transform F(z|, z) into a polvnomial ;'(:, 2n)
with coefficients modulo ¢ as stated in Fact 3.

5) Build the matrix :l4;; - 5.l for Flzy.2y) ac-
cording to the above Theorem. It might be possibie
that several values of z;; and several modulo ¢ have to
be tried (in increasing order) until one obtains a rank
of m - 1 (for irreducible £{z,,2,)).

Example
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Azp.z)=53 +(813z3 + 131423
+579z3 + 7523 + 60z, + 815)7
#(2323 + 1723+ 21523 + 11925 + 73X
+(83z3 + 132 + 4223+ 272, 4 23),
Forzy = 1 this becomes
Az b= +.>6362l +447z) + 188.
By reducing F(:l, 1) modulo 5 we have
F(.l. l)-- +'[ + 2z, 43 (mod 3).

Egs. (7) are, working in arithmetic modulo 3:

A= =(1 0 0)
HE N =01 0)
:f?- zf =(001)
sz—S—Z-l—vf:’«uzlwtq

=2(1 00)+30 1 0)+40 0 1)

zlE—‘zl—lzI—:fsl:pS:%N»zf
=2010+3001
2(349)

3

Sz _ 3,0 a3 _stmales:
1‘—321-3-1—-1—”1*4*"21

L]

(300)

2?52(2 3N+I3IHN+HI00N=1030)
=234 H+H3I00)+40 30100 3)
$=2A300)+30 30)+40 0 3)=(1 4
A=A030)+300 N+ 4 =4I D)
{5(003)*)“-4")1'4(4-- =400

W

(ail powers of 2, are modulo (=} + ez 43
For example, :‘ 15 obmmed 38 rollows one “akes

the remainder of imdma.l ove ..1 -, Iy s

which xs’-;-x ~lzf - {vihuss congruent. with

lny 3y *42‘ {mod $). Then z,.2{ and ={ are sub-

stituted by their ‘armer representations (0 1 0).

(0 0 I)and (2 3 4)respectively, yreiding(3 4 4).
The 4 and A -/ matrices are therefore
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/10 0} /0 00 \ the more information the a;; contain), the more dif-
: | ' ficult would be to reduce lhle rank
4=300): A-I=340! :
]
400/ \4 04 / We are gratefu] to BJ. Brames. M A. Fiddy and

The minor ia 21 =1 {mod 5). Hence the rank of the
matrix 4 - /is 2 and F(z,, 1} is irreducible and there-
fore F(z|,z,) is also irreducible.

The above procedure can obviously be used to test
whether a given object intensity will give rise to a
unique solution in the phase probiem by applying it
to the autocorrelation polynomial Q(z,, 1) =
FAlzq,24) Hzl‘l,:fl)z’l":’,_';in this case of course one
expects a minimum of two factors. In tact, as will be
seen in a forthcoming paper, this scheme may provide
a means of finding the actual factors, when noise is
absent. in Q(=y,24).

A small amount of noise would not change the
assessment of irreducibility found ‘rom the rank of
A - [. However, the presence of naise will change the
field of reducibility of F(z;,2,); ie. if the noiseless
polynomial was reducible into factors with ail integer
coefficients, the polynomial affected by noise may
become reducible into factors with irrational coeffi-
dents — these representing approximations to the true
integer coefficients —, complex coefficients. or even
not reducible at ajl. Thus the test put forward in this
note would become insufficient 1n thus case, Even
with a large amount of noise it would de dirficult to
have the exact perturbation which vields the correct
combinauon of cosificients in Fiz,. 25) for the rank
of 4 - I to be smailer than m — 1 if the noiseless 0b-
ject is reducible: the more complicated the object (i.e.

3
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Regenerative amplifiers with one phase-conjugate mirror
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We study the operating characteristics of a cavity with a gain medium inside and one phase-conjugate mirror as a
regenerative amplifier. We show that, for this cavity to work efficiently, the phase-conjugate mirror must have a
relectivity in a certain range determined by the reflectivity of the ordinary mirror. The difference between the

3

phase shift of the incident wave and twice that intr

Optical resonators with one end phase-conjugate mir-
ror (PCM) are a subject of active research!— (see Ref.
5 for a review) because of the property of the PCM to
correct, or partially compensate for, phase distortions
inside the cavity.

Recently, a Fabry-Perot cavity with one PCM of
unity reflectivity was shown to produce cancellation of
the wave that is specularly reflected from the ordinary
mirror, yielding an emerging output wave with the same
amplitude as that of the incident wave and with con-
jugate phase.5” This phenomenon constitutes in fact
a particular case of the correction of scattering distor-
tions of a wave front by the presence of a PCM.8

In this Letter we reprrt some properties not yet
studied of cavities with a PCM and filied with a gain
medium. We show that interesting interference phe-
nomena take place when the svstem operares below
threshold as a regenerative amplifier,21° 5o the behavior
of the system may be quite different from that of ordi-
nary amplifiers.

We assume an incident linearly polarized electro-
wagnetic wave ug and reflections in the mirrors P and
PCM such that complete reversal of the state of polar-
ization of the wave at the PCM takes place (see Ref. 8,
Sec. 7), so that one can work with scalar quantities. The
output wave emerging from the cavity will be denoted
by u (see Fig. 1). Let r be the reflection coefficient of
the ordinary mirror P from the left-hand side; then the
reflection coefficient of P from the right-hand side is —r,
and its transmission coefficient on either sideis 2 =1
- r?, The PCM is assumed to have a reflectivity u =
[ulei?, so if uy, is the wave reflected at P inside the cavity
and propagating back to PCM, the wave at P after
a round trip through reflection at the PCM will be
uertuy* in contrast with an ordinary cavity in which
a phase factor 2kL would be accumulated in every round
trip. k is the wave number, and L is the length of the
cavity.

The gain coefficient v of the medium inside the cavity
is given by the imaginary part of the complex propaga-
tion constant k,'9s0

k=k—iv/2 (1)
The single-pass gaini of the traveling wave across the
cavity is

0146-3592/84/120555-0382.00/0

d in the ph jug p should be

Go=eL. (2)

The complex amplitude of the output wave u may be
obtained either by using the boundary conditions for
the fields at P and PCM or by adding the geometrical
series that results by considering the multiple reflec-
tions in the plates. The second method, for instance,
gives
A =rug+ utlevlug® — t2riu|2ely,
+ tﬂl“|2“r’.'elhl.uot - tzrs}“ivteh(l.uo
+ t3ujturiedriygt + . ..
= rug = t2rp| 2e 20 L(1 + | 2r%e L + .. Dug
+evliu(l + |yl 2r2e2l + | ue*
_r(l =22 Yus + u(1 - rPerluy®
1 —r3y2enl

3)

The condition for the convergence of the series, which
also corresponds to the stability of the feedback sysiem,
is

rdp|Zeri < 1. 4)

Figure 2 shows the plots of |uj? versus the critical values
(yL). at which

rqul2e20vlic = | (3)

for several reflectivities r2.
The overall gain of the system is given by the intensity
of the output wave [ = |u|%

[= [r(1 = |ui2e?rl) + [u](1 = rY)erL cos o)2
BT

i(] =—rerl 2
s =rer” s (6)

1= et S0 0|

where ¢ = & — 299, ¢o being the phase of the incident
wave ug, and where the amplitude of the wave is as-
sumed normalized to unity, i.e., ug = ei%o. .

We compare the expression given by Eq. (6) with the
overall gain of a cavity with two ordinary mirrors of
reflectivities r; and r» in the resonant situation. namely.
when 2kL = 2nx (n is an integer):
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[1a00d = 'rl‘l - "22e2"l')“" :2(1 - ’lg)e"le 1)
1 = rfrgtetrl ]

or in the particular case when r; = r» = r in which Eq.
(7) become

L
ord = (LT
1“ [1 - rlgrl

From Egs. (6)-(8) we observe the following:

2
. (8

{1) For ¢ = mm (m is an odd integer), [ becomes
identical with /,2°'d and has a zero at

Go=e L =rfAy, (9)

which occurs for yL positive (i.e., single-pass gain Go
greater than unity) when » > |gf. (Observe that this is
in agreement with the law of conservation of energy of
the electromagnetic wave.) This fact permits the de-
termination of the phase oo of the incident wave in this
device for Gy, r, and | u| given satisfying Eq. (9) (which

lagut \J
——

CALN MEDIUR
-—

Output “

L

Fig. L. Diagram of the regenerative ampiifier.
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Fig. 2. Values of w® versus the critical i¥L)g for several
retlectivities r-.
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Fig.3. Overall gains versus yL and Go forr2 = 0.95: - - -,

I;;°4. The horizontal solid line represents [ for ¢ = 0 and any
142,]4% = 0.20 and any o, and |42 > 1.05 (e.g..)uf? = 1.2 and
higher). —.—:, [ford¢ = zx/4; — <o —-. , I for ¢ = 7/2;
——ee——ees L, for @ = & (= ]p0rd); other than hori-
zontal, I for ¢ = 37/4.

can be attained, e.g., by varying the length L of the
cavity) if the phase shift at the PCM & is known and .
matched to satisijy  — 2 ¢po=mw. [Wheny =0,Eq.
(9) implies that r = |u].]

(2) The overall gain is enhanced below threshold by
working near its resonance point (YL ). ziven by Eq. (3,
while maintaining condition (4). Since (yL), is positive
for a cavity with gains, one should have, according to Eq.
(5),|u|2 <'1/r2. This leads to the result that no overall
amplification is obtained by increasing the PCM re-
flectivity beyond the value 1/r2,

(3) For ¢ = 2n= (n is an integer), ] does not present
any resonant value. At (yL).,/ has the finite value (1
+r2)/2r. Therefore, when ® = 2¢¢, the cavity will not
work as a regenerative amplifier. This will be so in
particular when ¢q = O and there is perfect phase
conjugation at the PCM. i.e..when & = 0.

Figure 3 illustrates -hese points. The overall gain [ has
been compared with the ordinary case [1,°™ given by
Eq. (8) {r2 = 0.95), and [,,°™ given by Eq. (7) appears
plotted as the limit of ] when ¢ = 7. The curves of [
versus vL and G are shown for different values of ¢ and
1142 while r? is maintained at 0.95.

For ¢ = 0, [ remains around unity, and no regenera-
tive amplification takes place independently of 'wi®.




£y

For low |uj? (uf? = 0.20), I also takes values around
unity even when yL is large and independent of o.

For|u®=1.2(1.2> 1/r? = 1/0.95) and higher, [ also
remains around unity, and no improvement of the
overall gain is obtained by increasing |j? above the
value 1/0.95 = 1.05.

For intermediate values of |u|? (e.g., |u|? = 0.60) one
obtains first, constant [ for low yL, then, as vL in-
creases, a minimum followed by a sharp increase of /.
These minima are deeper as ¢ increases from 0 to =,
until the situation corresponding to I12° is reached
when ¢ = 7 with a zero minimum around yL = 0.23 (G,
=~ 1.26).

Finally, when 1/r% > | 4|2 2 r2 (e.g., when |2 = 1), the
cavity works efficiently as a regenerative amplifier with
overall gain higher than [,,°0d but lower than /,°"¢ since
the amplification increases with o.

In conclusion, we have shown that, under the as-
sumptions that there are no saturation effects and that
u remains constant independently of the intensity of the
wave incident upon the PCM, a cavity with a gain me-
dium inside and a PCM presents interesting interfer-
ence phenomena. It permits (with or without gains) the
determination of the phase of the incident field if the
phase shift of the PCM can be known and adjusted so
that the emerging field is zero. It also requires certain
conditions in order to work as a regenerative amplifier:
The phase shift at the PCM-should be twice that of the
incident wave, and, in particular, if the phase of the
input is zero there should not be perfect phase conju-
gation, i.e., $ must be different from zero. Also, the
reflectivity |42 of the PCM must be in the range r2 <}u?
< 1/r%. Forlarge r2, |42 = 1 is a good value.
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It has been experimentally demonstrated that the effect of doubly scattering coherent light within the limitations
of a particular model gives rise to probability densities that are K distributed. The probability distribution of pho-
ton counts P(n) therefore has an exact analytic form and has been favorably compared with the experimental val-

ues, as have the normalized momen1s of intensity.

INTRODUCTION

A recent theoretical paper by O'Donnell! has examined the
probability distribution of intensity and the correlation
structure of coherent light that has been scattered on two
distinct occasions. The model is essentially one in which
dynamic Gaussian speckles arising from a primary scattering
mechanism are themseives scattered by a translating diffuser
+see Fig. 1). The secondary scatterer (diffuser) is located in
the far field of the primary scatterer. and it is assumed that
the microstructure of this diffuser is much finer than the in-
cident coherence domains (speckles) that illuminate it. All
measurements are made in the far field of the secondary dif-
fuser.

Using these assumptions together with a nonrestrictive
approximation. it was snown! that this process exhibits a
probability density of intensity that is K distributed.” The
moments of this distribution are well known® and agree fa-
vorably with the experimental results presented in this paper.
Further. it is demonstrated here that the Mandel transform
of the intensity distribution may aiso be expressed in an exact
analytic form to vield the probability distribution of photon
counts. These curves are shown to fit the data extremely well
and confirm the analysis that this process is indeed & dis-
tributed and hence capable of exhibiting highly non-Gaussian
fluctuations undes circumstances that are explained below.

THEORY

Only the most basic elements of the theory are presented here.
a more detaiied account being given in Ref. 1. The experi-
mental arrangement is shown in Fig. 1. A laser source illu-
rainates a rotating ground-glass diffuser, producing dynamic
Gaussian speckie in the far field, where the second transiating
diffuser is located. A hard circular aperture is placed on axis
immediateiy behind the second ditfuser to limit the number
of speckies that illuminate it. If the correlation scale ti.e.. the
speckle size) is much larger than this aperture. we may assume
that, at any instant of time, the complex speckle amplitude
denoted by aq is approximately constant over the scattering
aperture. The compiex amplitude seen by the detector may
then be expressed as

=ik
A v =y ff S v'expl—l- x§+ ,\‘m‘d:'dn. 8]

9740-3232/85,010022-03302.00

where ¢(§, n) is the transmission function of the second dif-
fuser and D is the domain of integration [an unimportant
phase term and scaling constant were ignored in Eq. (1)).
Hence Alx, ¥) = apdolx. y), where ag, 4 are independent and
are themselves Rayleigh distributed according to

2la.
plag) = 'a—j exp(~jay Y12,

12y

5 expi={dAq2/aa?), (2

2dg
pildd) =
with 017 = (/ag|?) and d-? = (|Ag2).
The probability density of 4 = agdq is then

plal = dldgdlaooilag)ptdnd(Al = {Adlag). (3)
0.

where 4 is the Dirac delta function.

By carrying out the integral over Aj first and by making the
substitution e¢ = ag>0s/(|4| o) for the second integral, we find
that

pl(4l)=4—ﬂf de xp(

This is an integral representation of the zero-order Bessel
function of the second kind; thus

Al
co:hm 4

HAl o, (24
A = —" 5
pi4h 3 1\0(\‘ d) 13)

where 3 = (|A12) = 0,2¢02

If many speckles are illuminating the second diffuser. an
intuitive approximation is made. in that the compiex ampli-
tude of each speckle is spatially constant over equal-sized
domains within the scattering aperture. We may then express
the complex amplitude seen by the detector as

N - -
Ax. ¥y =% a ff g, exp{—'lQ 'x§ +ymI dsdn,
- D, -4
6

where a, is the spatially constant compiex amplitude of the
tth domain O, and .V is the number of comains present within
the scattering aperture of “he diffuser. e contral-limit
theorem ensures that each integral wiriin the sum represents
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Fig. 1. Experimental setup.

a complex amplitude, which has circular Gaussian statistics.
By the theorem of Jakemnan and Puseyv,? a random walk of the
N steps in Eq. (6} is distributed as

44 1 (Hl N (2!.4[
T N-1

2ijdh = =L = )
N TV v3\va

V3
which may be rewritten in terms of the normalized intensity
distribution as

2 1 {I\wN=-vr2 I
P ———— e : 2 -1
=T 3(,3) Ky (‘\/;) ®

where ' [’ = N3 = (JAi 2) is the average intensity, Kv is the
modified Bessel function. and T'(.V) is the garma function.
Thus a random walk of .V steps. in which each step length is
given by a K distribution. leads 10 another K distribution of
the order V' = 1. The normalized moments of intensity are
thererore

dm milim+ V)

- 9
(hm - NATN) (

where we note that. when .V = 1,
ef™

——=im}2

(tHhm

which represents strong intensity tluctuations, whereas for

large .V it is easy to show that

. my ,
imy -a—— = m!,
YT

wnich represents a Rayieigh or circular Gaussian distribution.
The present experiment expiicitly measures the probability
distribution of photon events Pin) from which the normalized
intensity moments are found by computation of the normal-
ized factorial moments of P{n). A theoretical calculation of
Pfn) mav be achieved by taking the Mandei transform of the
intensity distribution "'Eg. 'S},
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The Mande! transform is defined by

- (eehn
Piny= {7 a1 P L xpi-ah. 010)

a
where ¢ is the detector efficiency and ¢ denotes the experi-
mental sampling time. It is a necessary condition that the
sampling time ¢ be much less than the average intensity-
fluctuation time 7. for Eq. (10) to be considered valid. Direct
substitution of Eq. (8} into Eq. 110} yields a Bessel transform
whose solution® is

Pn) = (n)~=N"

T(N+n) { 1
rwy T

where (n) = Net3 is the average number of photons per
sample time and W, ,(x) is the Whittiker function with k& =
—tn+N/2)and y = %N - 1).

Again. substitution of the appropriate form® of the Whit-
tiker function in Eq. (11) vields the result

1 f{n)\r =, xV*n~lexp(=x)
Pln) = —— (22 de T eRTn) g
(n r(M(.v) J; * WO
(1+——V )

The integral in Eq. (12) was calculated numerically for each
value of n. as it is an exponential integral and cannot be re-
duced analytically. Although our heuristic derivation of Eq.
(12) was based on a model with implicitly integer values of V
(approximately equal 1o the number of speckles iiluminating
the second diffuser), it is not restricted to integer values,
provided that N > 1. Numerous examples of distributions
involving noninteger values of .V were analyzed and agreed
well with the predictions of Eq. (12).

)W;w(l/(n)). an

EXPERIMENT

An 8-W argon-ion laser, A = 490 nm. was used as the primary
source of coherent light, which passed through a microscope
objective of 16-mm focal iength before transmission through
the first diffuser. The distance between the microscope ob-
jective and the diffuser was varied in order to control the di-
ameter of the primary source and therefore to control the
speckle size in the far field of the rirst diffuser. A second
diffuser was placed on axis at a distance of approximately 1.65
m from the first diffuser. and a hard circular aperture pre-
ceded it. The detector was located along the optical axis at
a distance of approximately 1.5 m from the second diffuser.
The detector consisted of a 50-um-core optical fiber coupled
to a photomuitiplier tube (PMT) and to a pulse amplifier/
discriminator. Digital output from the discriminator was sent
to a photon correlator and an on-line computer for processing
the moments of intensity and the photon-count histogram.
The sample time for all measurements was 3 X 1077 sec. and
a tvpical 30-sec run vielded a total of approximately 6 X 10°
samples. The /e correlation time of the doubly scattered
intensity fluctuations had a measured value of 7, ~ 5 X 10~
sec; hence the total number of independent samples was ap-
proximately M = 6 X 104 .or a 30-sec run. Corrections for
dead time and dark counts were made in calculating the nor-
malized moments, although hoth etfects were small. A lower
limit of the rms variance for the moment calculations was
made using the following simple argument: If x represents
the vaiue of the mth tntensity moment, as estimated rom M
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Table |. Experimental Measurements of the Normalized Moments of Intensity
Number
of
K I Nidl (13 Independent
I a3 NI SIS Samples
N=1
Predicted value 4 36 37 14400
Experimental values 103 £0.12 35.13 £ 3.6 470 = 200 7425 = 18000 6 x 10*
4.06 £ 0.12 36.55 £ 3.6 520 £ 200 T3 + 13000 6 x 10*
4.003 £0.12 3442236 440 £ 200 6850 + 18000 6 x 104
N=2
Predicted value 3 18 180 2700
Experimental values 3.06 + 0.09 1850 £ 1.7 163 £ 30 1610 + 1800 3% 104
2.94 £ 0.09 16.44 = 1.7 134 £ 50 1240 = 1800
N=3
Predicted value 2.66 13.3 106.6 1244
Experimentai values 267 £0.05 13.4 £0.7 100 £ 17 922 + 480 6 x 104
2.66 + 0.09 129 £ 1.2 38 = 31 665 + 800 3 x 10¢
N=g¢
Predicted value 25 11.25 7855 8775
Experimental vaiues 2.53 £ 0.07 11.32 £ 0.09 73618 321 = 330 3x 104
statiszically independent samples [, i.e., distribution of P(n} gradually broadens toward a negative
L M exponential distribution as .V is increased.
x=—=3 I;™,
M= SCUSSIO
then the variance of r is D1 N
MLm= (Lt ([ = ([m)2 TheAexpe.rimenta.l values of the normalized moment of in-
0,2= S = - PED ) tensity, shown in Table 1. indicate good general agreement

1 M? M

The normaiized rms variance is obtained by dividing Eq. (13)
by (/™)? and taking the square root. This yields a lower
bound for the error, as no account of the error in the denom-
inator or the photon noise was folded in. itis ciear from Eq.
(9), however, that the rms variance increases dramatically with
increasing m.

A comparison of the experimental measurements of the
normaiized moments of intensity with those predicted by
thecry s shown in Table 1. The values are seen to agree with
theory well within the experimental error. Experimental
determinations of the parameter .V may be achieved by a
straightforward calculation of the speckle size incident upon
the scattering aperture: however, it is more consisient to define
.V by comparing the experimental value of the second moment
of intensity with that predicted by Eq. (9). This convention
is used in establishing the experimental values of .V in this
paper.

The vaiue of .V approximately corresponds to the number
of speckles illuminating :he second diffuser. This s easily
controlled in the experiment by adjusting the beam diameter
incident upon the first diffuser and/or by varying the diameter
of the hard aperture. For the experiments, the combinations
shown in Table 2 were usea.

A comparison ot the "nheoretical distribution of photon
counts Pfn) with tne exterimentai results is shown in Fig. 2
for.V = 1, 2.3 4ana vireus vaives of 'n). The model fits the
data extremeiv wetl. Torizza . the curves show how the

with the predictions of Eq. 19). However, it is clear that ai-
most all values fall slightly below the predicted value. This
is probably due to a truncation error, since only 64 channels
were used in the histogram and the effect of cutting off the taii
of this distribution would certainly result in a lower value of
the caiculated moment. The run times were also a bit short
in terms of gathering a zond siatistical base for the fourth and
the fifth moments {see Eg. 1 13)}.

The distribution of photon counts P(n) fits the theoreti.
curves {Eq. (12)] to at least the 3% level for N = 1, 2, as shown
inFig. 2. For N = 3. 4, the theoretical curves again show ex-
cellent agreement with the data: however, the tirst few points
tend to be slightly more spread out than those predicted in
theory.

[t is instructive to compare this model with other svstems
that exhibit K.distributed probability densities. These

Table 2. Typical Parameters Used for Selecting
Various Values of NV

Beam Diameter Aperture Diameter

A a 'mmi°® 24 immy

1 0.24 1.0

2 0.32 20

3 0.32 25

4 0.48 2.3

* The heam diameter refers *» the ormary = m J.amerer 1t the 1 o< on.
Tensity

w ;
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svstems iociude the sf seattering of laser light fromaja
turbuient laver of nematic liquid crystal.” 1b) a turbulent layer
of air.? (¢! the scattering of stariight from the upper atmo-
sphere,? and 1d) the scattering of microwave radiation from
a small patch of turbulent seas.i® According to the limit
theorem of Jakeman and Pusev.* if a scattering medium is
made up of a finite number N of independent scattering
centers. each of which contains a correlated group of lesser
scatterers rwhich obev negative binomial statistics), then the
2mplitude scattered by each independent region is K dis-
-miouted. [n the present context. however, the K distributions
1r:se for a different reason. in that they are explicitly gener-
sted by the muitipiicative erfects of double scattering, eacn
arocess peing :ndeperndentiv Ravieigh distributed.

Finaily. v =1 the aronizm reduces to that of scattering
2 single Gaussian corretateq zource from an onticaily rough
diffuser. [n other words, this may be interpreted as a
Gaussian-Gaussian scatiering process, which has been in-
vestigatea in a different context by Bertolotti!! and others.
[t .5 strngnttoeward “o show that, .n this case. the temporal
< tgxes the turm

U LAl lion b nienisnie

Cmr = [+ v nfl +yamn?), t14)

where ' Y147V, iv2(7)| are the amplitude correlations of the
independent processes 1 and 2. In our experiments

ia-

¢

2

=t
'
[{

Sf2TAVr
=0 ( Az

/(27.4 V:.—)E
Az '

where V71, V are the diffuser velocities. a is the laser-beam
diameter. A is the scattering aperture radius. and J;(x) is the
Bessel function of the first kind. The correlation functions
were measured with the the photon correlator. and the shape
and the time scaies were in agreement with Eq. (14). How-
ever, the results are not reproduced here.
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We study theoreticaily a Fabry-Perot interierometer with one phase-conjugate mirror. Comg _.isons with resuits
¢+ .viously obtained by Kastler [Appl Opt. t, 17 (1962}} for an ordinary Fabry-Perot interferometer are made.
Speiiically, we discuss the fieid intensity of the light both outside and inside the interferometer. We also study
the intensity of the exterior field that is due to atoms radiating incoherently inside the interferometer. The operat.
ing characteristics below the threshoid of the interferometer when it is filled with a gain mediuzm are also analyzed
and are found to be different from those of the ordinary interferometer. Finally, conditions are obtained under

which the cavity can act as a regenerative amplifier.

1. INTRODUCTION

In an interesting paper! Kastler studied the fields generated
inside an ordinary Fabry-Perot interferometer and also those
generated outside the interferometer by atoms radiating in-
coherently inside the cavity.

In recent years, phase-conjugate optics has experienced
rapid development,> and phase-conjugate reflectivities of
the order of unity and higher have been achieved. ™% There
has also been progress in the understanding of scattering of
phase-conjugate fields (see, e.g., Ref. 8 and the references cited
therein).

Optical resonators with one phase-conjugate mirror (PCM)
have also been actively investigated,®-!® and the am-
plitudes of the field emerging from a cavity without gains
when a plane wave is incident upon the system have been
calculated. 416

In this paper, we investigate theoretically an interferometer
that consists of a lossless dielectric mirror and a PCM. We
calculate the field that emerges (rom the cavity for several
reflectivities of the ordinary mirror, and the results are com.
pared with those of Refs. 14-16. We also compute the field
intensity inside the cavitv and compare it with the intensity
inside an ordinary Fabry-Perot interferometer that was in-
vestigated in Rei. 1. The case of atoms radiating incoherently
inside the cavity is also considered and is contrasted with
the more usual case treated in Ref. 1. 1n both cases, we find
that there is higher amplification of the fields in an interfer.
ometer with a PCM compared with the ordinary interferom-
eter.

We also compute the intensity of the field emerging from
the cavity when it is filled with a gain medium and the ordi-
nary mirror is iiluminated at normal incidence. We will see
that there are interesting intetference phenomena for the
output wave when the system operates below threshold as a
regenerative amplifier!"-: % t may give rise to emerging fields
that are quite different ‘rom those produced by ordinary
amplifiers.

All the calculations ass:::ne monochromatic linearly pola-

1740-3232/85,030427-10802.00

rized input waves and also reflectivity of the PCM that is in-
dependent of the intensity and propagation direction of the
wave incident upon it; hence this reflectivity remains constant
during multiple reflections inside the interferometer.

2. FIELDS GENERATED BY AN
INTERFEROMETER WITH A PHASE-
CONJUGATE MIRROR

Let us consider a system consisting of a lossless nonmagnetic
dielectric partially transmitting plane mirror P, whose am-
plitude, reflection, and transmission coefficients are r and ¢,
respectively, and a plane PCM, which is parallel to P (see Fig.
1). We shall assume for the moment that the space between
boin planes is a vacuum. As is well known (see, e.g., Ref. 14
and references cited therein), if t and 7 are the transmission
coefiicients of P from left to right and from right to left, re-
spectively, then ¢ = 7: also. if r and p are the reflection coef-
ficients of P from left to right and from right to left, respec-
tively, then r = =p. As in Ref. 1, we assume that r, p, ¢, and
T are real quantitites satisiying the relations

riet?a, (la)
rt+tp=0. (1b)

Let an electromagnetic plane wave, which is linearly pola-
rized either in the plane of incidence or perpendicular to it,
be incident at angle # on the mirror P. We take its amplitude
to be normalized to unity. We assume that the reflected wave
at the PCM suifers complete reversal of the state of polar-
ization (see Ref. 8, Sec. 7, and Refs. 14-16), so that we can
employ a scalar descripuion. The incident wave will be

E = exp(ik; -r), (2)

where k; is its wave vecior.
The transmitted wave E, at P will be in the same direction
k; 18

E, =t explik, - r. 3}
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The reflected wave E, at P will be (Fig. 1)
E, = r exp(ik,- r), 4)

k. being the wave vector of this wave.

When the field E; reaches the PCM, a reflected wave, which
is the conjugate of the incident field £,, is generated that has
the wave vector —k;19: ut® exp(—ik,-r). uisaparameter,
assumed constant (see Ref. 12), which represents the ampli-
tude reflection coefficient of the PCM. This field is partly
reflected and partly transmitted at P, and this process con-
tinues. As a result of the muitiple reflections between P and
PCM there are four series that represent the fields £\, E», E3,
and E, inside the cavity formed by P and PCM (see Fig. 1) as
well as a total reflected field £z and a phase-conjugate field
Ec outside the interferometer. The amplitudes of all these
fields are

t
Ay =t +tju|2r2 + t{p|tré+.. = ———, 5
vt + o T 5
E E
R Ez 1
K 0
T
z k- ] (3
E. E
i 4
E, Eq
——
P L PCM

Fig. 1. Reflection of an incident plane wave E, from an interfer-
ometer consisting of a dielectric plate P and a PCM.
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ut
Ag = ut + ut|p|?2r2 + ut|u|rt... = . (6)
(w22 + uelu] 1= a2
utr
A= utr + ptrui?r2 + ptrip|tré+... = o (7)
3= utr + peripl utriu 1-tu%r?

A= w2t + 1l 2relul 22 + | gl 2re g4t + ...
|sdd%rt :
= —— 8
Tl ®
Here, the geometric series have been summed under the as-
sumption that
|uj?2r2 < 1. 9
Hence the intensities of these four fields inside the interfer-
ometer are given Dy the expressions
=

(1= |p2r2y?’
- |ul2(1 = r?)

(1 = |pf2r2)2
- ¥l - r?)
(1= |ul?r2’
(443 = r?)
(1 = [u|2r®)2
where condition (1a) has been taken into account. Itis to be
noted that Egs. (5)-(8) could have also been obtained by using
the electromagnetic boundary conditions at P and at the
PCM.

Figures 2-5 show the plots of the intensities given by Eqgs.
(10)-(13) versus |ui? for different values of r2. For low
reflectivities r2, the field intensities can become large when
{u)? is large enough, because energy is then provided by the

I (10}

I, (11)
I3 (12)

(13)

=

s efease

RLLATIVE INNENSITY h,

efe 023

L] 1 N

Fig. 2. Field intensity /5 of the fieid £3.n Fig. L.

.
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Fig.3. Field intensity [; of the field £3in Fig. 1.
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Fig. 4. Field intensity [, of the field E, in Fig. 1.

pump fields at the PCM. For large reflectivity, 7 = 0.95; these
field intensities become very large as ] i approaches unity;
in fact, they may be 20 times larger than the intensity of the
incident wave. For values of |42 such that [g?r? 2 1, then
theory does not provide a stable solution {the constraint de-
scribed in expression (9) is then not satisfied].

‘The fieids Eg and E¢ were caiculated in Refs. 12and 13 by
adding the series

e ra . A————— i g—— YT T

- 2
AT Sl L PP

Ap = r+igl2re¥(1 4 |uj2rd s .
R ul Pui 1= Tuior?

and

uil =r?y)
L= lul 2
subject to the constraint in expression {9). The corresponding
intensities then are

Ac = 1 +|u2r"+..)= (15)

Vit *
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A=~ p®?
Gt e

AL =22
]c=(u{ (1=r3? an

(1 -1uf?r?)?
The intensities [ and /¢ are plotted as functions of |u® in
Figs. 6 and 7. These plots generalize those of Ref. 16 for r?
ocher than 0.95 or 0.50. The intensity I is exactly zero at |42
= | for every value of %, in agreement with a general theorem

and
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(Ref. 8); it increases quite rapidly for values of r? and |44*
greater than 1, provided that condition (9) is maintained. For
low reflectivities, high pumping energy, giving large values of
[#2, can yield large [z. For|u/2 = 1, Ic is equal to | inde-
pendently of 72 and also takes large values near the resonance
region 734 = 1. Of course, the theory does not provide stable
values of I and fc when r3u2 > 1.

We also note that since all waves reach any point outside
the interferometer with the same phase, there is no depen-
dence of Eg and Ec on the separation between the plates.

2

SLLATIVE IRIENsITY 3,

~
————

eteg.93 elase 0.3

cdeo.1s

+?ea.08

3 » S

Fig. 5. Field intensity I, of the field E, in Fig. 1.

AR 20 30
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2
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Fig. 6. Fieid inceasity of the reilected field £, in Fig. 1.
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Fig.7. 1 ity of the ph jugate field E. in Fig. 1.

3. TOTAL FIELD INTENSITY INSIDE THE
INTERFEROMETER

Consider now under the same conditions as before, a point P
of coordinates (r, z) between the two plates P and the PCM
as shown in Fig. 8. The waves meeting at P are E;, E9, E|, and
E i, whose respective amplitudes A3, A2, Ay, and A, are given
by Eqgs. (5)-(8). These waves have the following complex
amplitudes:

E3 = Ajexpliz(x sin§ — z cos §)], (18)
Ey = Agexplik(~z sin 8 + 2 cos )], (19
E, = 4 exp{iz1—z sind ~ z cos )], (20)
E, = Aqexplik(x sin 8 + z cos §)]. (21)

The total intensity at P is therefore
I=|Es+Ex+Ei+E2 22)
which, on taking Eqs. (18)-(21) into account, yieids
I = |Ay + Ay exp(2ikz cos 8))2
+]Az + A, exp(—=2ikz cos §)|?
+ 2 Rel[A; + A4 exp(2ikz cos §)]

X [A2* + A;* exp(2ikz cos #)]exp(2ik(x sin § = z cos B),
(23)

where Re indicates that the real part is taken.
By substituting fror- Eqs. (5)-(8) into Eq. (23) and writing
4 as

u=iplee, 24)

one finds alfter a lengthy bu: straightforward calculation
that

e e m e o

O t———
P L P

Fig.- 8. Total field at a point P inside the interferometer.

I=Tl—:,f‘,-,)—2u + P
+ i1 + r?) + 4142 cost2kz cos )
+ 2|u|jcos(2k(x sin 8 ~ z cos &) ~ o]
+ (1 + ] ?cos(2kx sin § ~ )
+{ui2r2 cos(2k(x sin § + 2 cos &) = o]i). (25)

which represents a rather compiicated system of fringes.
The caseiw?® = 1 is interesting and provides some insight.
Expression 125) then reduces to

- R
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{=

icos[kix sin 8 — 2 cos 8) ~ o]

1~-r
+ r2 cos{k(x sin 0 + z cos 8) ~ o|}>. (26)
It is interesting to compare Eq. (26) with the corresponding
expression /,, for the intensity resulting from an ordinary
Fabry-Perot interierometer given by Kastler in Sec. II of Ref.
1 for large r2:
4
[y = —l—’— cos?(kz cos 8). (27
— 2
When r2is large (near unity), Eq. (26) may be approximated
by the expression

l=

T cos¥(kz sin 6 - p)cosi(kz cos 8).  (28)
This expression represents a system of fringes along 0Z of
width Az = /2 cos . just as in the ordinary case described by
Eq. (27); however, these fringes are modulated by another
system along the OX direction of width Ax = A/2sin §.

Existence of fringes along the x direction may appear
somewhat surprising at first. Their separation is well defined
by Eq. (28); however, their origin is determined by the abso-
lute phase of the incident wave. When r? = 0.95, the maxi-
mum intensity of the fringes given by Eq. (28) is

16

I =
1=-r2

=320, (29)

which is more than four times larger than the maximum value
of the intensity in the ordinary Fabry-Perot interferometer
given by Eq. (27) under the same conditions:

oo =78, (30)

Also, the overall amplification factor of the interferometer,
which is given by the mean intensity, is in this case

(1) = 320{cos?(kx sin # - o) cos(kz cos §)) = 80. (31)

On the other hand, in the ordinary interferometer, one has (see
Sec. IT of Ref. 1).

(Ior) = 78(cos?(kz cos 8)) = 39. (32)

4. EMISSION FROM ATOMS RADIATING
INCOHERENTLY INSIDE THE
INTERFEROMETER

Suppose that there are atoms inside the interferometer
emitting light (for instance, by irradiating them laterally to
excite their optical resonance, as suggested in Ref. 1). The
waves emitted by these atoms will be assumed to be mutually
incoherent.

We shall consider the radiation emitted by an atom located
at a point M toward the outside through the plate P, at angle
8. Let £, denote this field (see Fig. 9). E., has an amplitude
that is given by the sum of four sequences of rays:

Sequence L1 ¢(1 + |22+ {u4r +.. )
4

= mv (33)
Sequence 4:  uefl + {22 +juér + .. )
ul
= m 134)

M. Nieto-Vesperinas

Sequence 3:  urttl +{uj2rd +|ultrd+ .. )

urt
— (35)
1 ~{uj%?
Sequence 2 [ui%re(l + |ui2r2 + |pltri+..)
Jpd2rt
+ =8 _ (36
LT (36)

The series has been summed under the assumption expressed
by relation {9). Since on reflection at the PCM the fields
emerge with the phase reversed with respect to the incident
one, all four of the sequences of waves emerge in the direction
A with the same phase factor explik(x sin 8 + z cos 8)); thus,
uniike in the ardinary interferometer, they will not produce
interference fringes. The field E, is therefore given by

(1 ~ 32
L= |ui?r?
X exp(ik(z sin § + z cos )], (37

Ey= (4 u+pr+]pf?)

and its intensity is given by
. Sl
(1 ~|ui??
+ 272 + 21 + 7)1 + sl cos 0}, (38)

where Eq. (24) has been used; the total intensity emitted by
N atoms radiating incoherently inside the cavity will be just
Nl

When |42 = 1, = 0, and r2 = 0.95, [, is equal to 312, which
indicates a considerable amplification of the intensity com-
pared with the intensity emitted by the atom at M in the di-
rection A in the absence of the mirrors, when it would have
the value unity. In fact, /4 is considerably greater than the
intensity generated by atoms radiating incoherently inside
an ordinary Fabry-Perot interferometer under the same
conditions; it would then have the value of 32 (cf. Ref. 1, Sec.
m).

[+ (1 + )3+ rags

1a

P L PCM

Fig.9. Field £, radiated at direction ¢ by an atom placed at M inside
the interterormeter.
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Fig. 10. Intensities [, of E, for ¢ = 0 and different values of the
reflectivity r2 of P.

14 is plotted versus |42 (see Fig. 10) for ¢ = 0 and for dif-
{erent values of 72. For high r2, e.g., 72 = 0.95, the intensity
is low for low values of | 442; but it increases rapidly once values
of |42 around 0.3 are reached. A dramatic change in the value
of /4 occurs when we pass from low values of | 12 to high val-
ues: Whereas in the first case higher reflectivity r2 at P
implies a lower value of /4, in the second case higher vaiues
of £ may produce very large values of /4.

§. EXISTENCE OF GAINS INSIDE THE
INTERFEROMETER

We will now consider the situation depicted in Fig. 11, in
which a wave (s is incident normally upon the cavity of length
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L. Let U be the output wave emerging from this cavity when
it is filled with a gain medium. If U, is the wave reflected at
P inside the cavity and sent back toward the PCM. the wave
at P, after a round trip involving reflection at the PCM, will
be{u| e‘® e YL U, in contrast with an ordinary cavity where a
phase factor 2k L is accumulated during each round trip [cf.
Eq. (24)].

The gain coefficient ¥ of the medium inside the cavity is
given by the imaginary part of the complex-propagation
constant (assumning no absorption losses), i.e., by the imagi-
nary part of

k=k-il. 39)
2 €
Hence the single-pass gaini8 of the wave across the cavity is

Go = gL, {40)

The amplitude of the output wave U may be again calcu-
lated in a way similar 1o that described in the preceding sec-

P PCcH

Isput u
—

GAIN MEDILM
——

Output u

L
Fig. 11. Diagram of the regenerative amplifier.

l't):

Fig. 12, Vaiues ofiur? versus the critical 1+ L), for several rerlectiv-
ities re,

e e ——_— i
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tions. Making use of the geometrical-series method, we ob- 1o L 02 » % i 1
tain. with the amplitude of Uy normalized to unity, T e
A =r+ “[Ze':l._(2,}“".’ehL+tq‘4'_‘#r29hL N
: PRV S
—~t2r ¥y edvl 4 ¢ Tpispriedrl ¢ RS [
w’
=r =t 2|2l + |pl 22 el + ) r s
| B
k(] + el 4 ) 5; Eih
P = (a2 e37E) + uil = rDel
Bt u 1
1 =r3u2ent
w L
The condition for convergence of the series, which also
corresponds to the stable solution of the feedback system, -
is 2
g
r3gzedrl < 1. (42) H
Figure 12 shows plots of |42 versus the critical values (YL). fup
at which 3
rAuf? o200k = | 43)
for several reflectivities r2.
The intensity I = |U]? gives the overall gain of the .
system !
i ta L 0 g e e T T :
- - rvr—r— v w' A A A . A
1 n 3 o 2 e 2ERNL oW 30 ‘0\30
T ety whn (m,-uvl
ore il Fig. 14. Overall gains versus vL and Gy for r? = 0.65. Dashed line,
it} ,’P' T 118, Horizontal solid line. { for ¢ = 0 and any [ui®>. Dashed-dotted
lines: ( Yo = x/4,( y @ =2/ { ) o = 3x/4, and

BEIATIVE JNTRNSIYY )

o
!-«'ln‘-l/,'

, H
. P } -V
10 Lo —_ i N AV
[ H 2 “ s e 20 910 1y 10 0« s
tofom

F:g 13.  Overall gains versus yL and Go for #2 = 0.95. Dashed line
Rl 11 Honzontal solid line ( |3 I for o = 0 and any
Wit ot =020 and any 0. and [ > 1.05(e.g..;m? = 1.2 and higher).
Dashed—dotted lines: (~mes: / Iof & ® T/4. \commeme) [ SO > & /2,
{ 1 { for o ® xy= [;2°9), and nonhorizontai solid line. / for » =

3x/3.

() & = 1 (=11p°M).

2@~ 12 e®) + (ui(t = rfert cos 9)2

1~ r3yuf2e?
— pDerl
Inl(l r¥eL sin o]? (0

1 -ri e 2edrl
This expression should be compared with the overail gain
corresponding to a cavity with two ordinary mirrors of
reflectivities 7y and rq, respectively, in the resonant situation,
i.e., when 2kl = 2nx (n is an integer):
2rl) — po(l ~ rj”)evL]‘l

d Irl“ - ”' e- -
]12 = l 1o rlzr2 e."lL (40‘
In the special case when »; = r2 = r, Eq. {45) becomes
rl=e)? . 46)

ofd
1 ..,.2371.«

The resuits following immediately from Eq. (44) are

(1) Wheno = mr.(m is an odd integer), ] becomes iden-
tical to I,2°'® and has a zero at
Gomert =, 41
Jul
which occurs for positive yL (i.e., Gy is greater than unity)

when r > |ui; this is in agreement with the law of conservation
of energy of the electromagnetic wave. [t should be noted that

prow.
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if the amplitude Uy of the incident wave is considered to have
a phase factor ¢ (i.e., Ug is not unity), then the first term of
Eq. (41) should appear to be multiplied by Uy, whereas the
second term of that equation would appear to be multiplied
by Up*. Assuming that Uy = exp(i o), the phase in Eq. (44)
will now be ¢ — 2¢y instead of . In this case, the condition
® — 2¢n = mx with which [ has a zero when Eq. (47) is satisfied
[observe that when v = 0, Eq. (47) implies that r = [4]] can
allow the determination of the phase ¢q of the incident am-
plitude Uy if Go, r and || are given to satisfy Eq. (47) (this can
be adjusted in an experiment by varying L and }|), and one
determines the value of YL at which / becomes zero. ¢y is
then given by ¢ = 1/2(¢ - m=).

{2) The overall gain is ephanced below threshold by
working near its resonance point (yL). while satisfying con-
dition (42). Since (yL). is positive, for a cavity with gains
according to Eq. (43), one must have {2 < 1/r2. This leads
to the result that no overall amplification is obtained by in-
creasing the PCM reflectivity |42 beyond the value 1/72.

(3) For ¢ = 2n~x (n is an integer), ] does not have any
resonant value. At (yL)., it has instead the finite value (1 +
#2)/2r. The interferometer with gains therefore will not work
as a regenerative amplifier when there is perfect phase con-
jugation at the PCM, i.e., when ¢ = 0 [if Uj = exp(i¢y), this
will happen when ¢ = 24¢}.

ALLANIVE ImTEmsIIY

H
("),-I/'

v

i

0" i
H ? 3 - 1 4 1 %@ 18 n 10 W8 N
109y
Fig. 15, Overall gains versus YL and Go for #2 = 0.25. Dashed line.
I Dasned-dotted lines; - Hpa® =020, (e ? = 060,
and {~——1uw* = |. For o = 0, the curve corresponding touj® = |
's not distinguished rom that of iz ? = 0.60,
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Figures 13-15 illustrate these points: The continuous
horizontal line in Figs. 13 and 14 represents the overal gain
I for r2 = 0.95 and r* = 0,65, respectively, and for ¢ = 0, in-
dependently of |42 For low values of {uf? (12 = 0.20), ] is
also close to unity for 7? = 0.95, independently of ¢. Forjuj?
= 0.20 and r? = 0.65 and 0.25, the low values of / are seen in
Figs. 14 and 15. When |y > 1/r?, independently of o, the
values of / in any of Figs. 13-15 are similar to those with o =
0. Hence there is no amplification when the reflectivity of the
PCM exceeds the value 1/r2.

For r? = 0.95 and intermediate values of {42, constant val-
ues of / are obtained. These are followed by minima (which
are zero at ¢ = 7) and by abrupt increases. For these values
of |42 and for r* = 0.65 and 0.25, these minima either are less
pronounced or do not appear at all.

Finally, when 1/r2 > |12 2 r2 (e.g.. || = 1 for r2 = 0.95 or
rt = (.65 and r? = 0.25), regenerative amplification takes
place.

6. CONCLUSIONS

We have investigated theoretically the fields generated by an
interferometer of the Fabry-Perot type but with one of the
plates replaced by a PCM. .

We made a comparison of this system with the ordinary
interferometer that was studied fully by Kastler, and we
concluded that the system with a PCM can generate more
intense fields than the ordinary cavity with the ordinary
mirrors having the same reflectivities.

When the interferometer is filled with a gain medium, we
obtained stringent conditions that allow the cavity to work
as a regenerative amplifier: No perfect conjugation at the
PCM must take place [i.e., ¢ should be different from zero, or,
if Uy = exp(io), ¢ should be different from 2¢y], and the re-
flectivity |42 must be in the range 72 = |42 < 1/r2,

For large values of r2,|ul2 = 1 is a very good value. Asé
increases from O to «, the amplification increases until the
ordinary-cavity situation is reached at ¢ = =.

A Fabry-Perot interferometer with a PCM permits the
determination of the phase of the incident wave. When U
= exp(igo), ¥ = 0,and u = r (¢ = 0), then Eq. (44) yields (¢ —
@ ~ 2d0).

2r?

= m [1 cos(2¢0)); . (48)

hence the output intensity depends in a simple way on the
phase ¢o of the incoming wave. The measurement of [ thus
may provide information of ¢y

It is clear that 8 Fabry-Perot cavity with a PCM has some
remarkable properties that also deserve to be investigated
experimentally.
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ABSTRACT

Infrared one-dimensional (E-W and N-S) speckle interferometric observations centered on HD 44179 (the
“Red Rectangle ™) reveal spatially resoived extended emission at K. L. and M. of t.e diameter 1"05 N-S and
0”4 E-W, as well as a central source of 1.-e diameter 0"2. Polarimetry at K with a beam size encompassing
both sources was also obtained: the low resultant polarization suggests that scattering off grains associated
with the bipoiar flow is not a plausible source of the infrared emission. The spauaily resolved extended emis-
sion is elongated in the direction of the bipolar flow and is interpreted as thermal dust emission.

Subject headings: infrared: sources — interferometry — nebulae: individual — polarization
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. INTRODUCTION

Since the discovery (Cohen et al. 1975) of the bipolar nebula
associated with HD 44179 (the ~Red Rectangle™ and the
infrared source AFGL 915. an increasing number of bipolar
nebulae with bright central inirared point sources have been
identified. It 1s now clear that all these objects do not represent
the same phenomenon. A large number of bipolar nebulae are
apparently associated with evolved mass-losing stars and may
even be " protoplanetary nedbulae * as proposed by Zuckerman
et al. (1976) and supported by Caivet and Cohen (1978).
However. voung objects are also associated with bipolar phe-
notnsna on various scales. ¢.g, L155t IRS 5 (Beichman and
Harris 1981) and S106 (Pipher er al. 1976). Icke (1981) has
aemonstrated that bipoiar shapes arise from a biconicai
sutilow above a disk geometry- for sxample. Baily and Scoville
t1982) observe a constraintng disk for the bipoiar Jow in $106.

The Red Rectangie is a pecuiiar obiect tn a number of ways.
and 1s 0 Jdate umgue. Some of its properties are outlined
beiow.

1. The optical nebulosity differs at vanous wavelengths. but
the bipolar nature i1s best outlined with a red filter. and 1s
predominantly a N-S bicone 1Cohen et al. 1975): spikes
tangent to the edge of the bicone are observed. impiving that
material in the nebula 1s distributed 1n an opucaily thin shell
rather than throughout the biconical volume (Webster 1979).

2. The wvisibie object at the center, HD 44179, contains a
weii-established binary. The most recent pudtished determi-
nation is a separation of 020 = 0702 at a position angle of
146" = 37 1n 198187 by Meaburn et ai. (1983). The near-
sauality of the two components makes 1t difficuit 1o determine
the orbiial eiements. dut Meaburn ¢t ai. propose a plausible
progression of the position angle with tme.

By

3 The visibie stansi have been tentatively idenuiied as spec-

' Visiing Astronomers a1 Kitt Peak Nauonal QObservatory, operated by
the Associauion of Universives for Research in Astronomy. Inc.. under con-
tract with the Nationat Science Foundation.

P Now at 8tuckett Laboratory. Impenal College. London. England SW7
Bz
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tral class ~B9-A0 IIT by Cohen er al (1975, aithough a
normal B-star atmosphere cannot be fitted to the spectrum.

because of the large observed Balmer jump and infrared excess. *
Greenstein and Oke (1977) provide two alternative models of
HD 44179, one a B star with an extended neutral shell, and one
an unusual Population IT F giant. The UV spectra of HD
44179 show features in emission and absorption unlike those of
other z2arly-type stars with circumsiellar shells (Sitko. Savage,
and Meade 1981: Sitko 19831 At wavelengths <1600 A, there
is a pracipitous deciine in Qux: the distribution of flux at wave-
lengths < 1400 A suggesis that the star has a spectral type of

~A0.
4. An optical spectrum of the nebulosity includes a peculiar f
broad red emissien featurs wnich Schunili, Cohen, and
Margon (1980r and Warren-Smith. Scarrott, and Murdin
11981) have resoived into narrow emission lines from a very
low excitation piasma. in addition :0 diffuse features which
remain umidentiied dut may e ardon-nich moiecular emis-
ston. This feature is shown by Schmidt. Cohen. and Margon
(19801 and Perkins et ai. t1981) to be nebular emission rather
than scattered starlight.

3. Infrared spectroscopy of the point source revealis a signa- ‘
ture quite different from those of other protoplanetary nebula
or pre-main-sequence candidates. High-resoiution near-[R
observations by Thronson (1982) of the Red Rectangle show a
featureless spectrum from 1.5 to 2.3 um. although there is pos-
sible marginal detection of three 3¢ = 2 overtone CO bands.
This 1s in contrast to spectra of candidate protoplanetary
nepbulae GL 2688 and GL 618. which are dominated by moiec-
ular hvdrogen emussion. and HM Sge. which exhibits weak
lines in the Brackert series. The inirared photometry to 27 um
of the infrared point source in the Red Rectangle shows a
broad infrared excess. not idenufiable with a single. cooi black-
body temperature (as is the case. for example, with GL 2688:
Nev et al. 1975). If the infrared radiation is thermal emission, it
1s optically thin: this s supported by the presence of unidenti-
fied emission features at 3.28. 6.2, 7.7. 34 and 11.3 um, nor-
mally associated with opticaily thin therma. 1ust »musston in
planetary nebulae. H 11 regions. and refiection necuiae.
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6. The low polanzation of the blue scattered light within the
bipolar nebula can be understood from the polarimetric maps
of Perkins er al. (1981) and Lacasse (1984). Substantial polar-
izations 1 ~ 20°%) are observed along the spikes and just outside
tae bicone. while values of 5%-10% are common in the nebula
wself.

7. Geldzahler and Cohen (1983) give 2 3 ¢ upper limit of
0.09 mJy at 1.5 and 4.9 GHz to radio emission from their VLA
observations of the Red Rectangle. and similarly only an upper
limit to the **CO J = 1-0 line emission was obtained (L. Blitz,
as quoted by Schmidt. Cohen, and Margon 1980).

Previous investigators have proposed the following model
for bipolar nebulae. The central star is located in an equatorial
disk (or torus) which may obscure the star in the visible if the
disk is sufficiently dense. If viewed edge-on or at a slight inchi-
nation, the star may be visible and the bicones may exhibit
differing intensities. The central object is often a strong infrared
source. A thin cloud of dust and gas located on either side of
the disk is responsible for the bipolar retlection nepulae.

ln this paper. we present infrared speckle interferometry on
AFGL 915, the central source associated with HD 44179, as
well as inirared polarimetry of the point source and the sur-
rounding nebula. These observations serve to refine models of
this snigmatic object.

11. OBSERVATIONS

The Red Rectangie was observed in 1981 Decsmber and
1982 May using the Kitt Peak Infrared Speckle Interferometer
on the 3.8 m Mayall telescope. One-dimensional measurements
were made at K (2.2 um}. L (3.5 yum). and M (4.9 um) with E-W
scans and at K and L with N-S scans.

The technique of one-dimensional infrared speckle interfer-
ometry is well established 1Sibille. Chelli. and Lena 1979,
aithough severai observational probiems remain, some of
which are discussed below. A scanmng secondary mirror is
used 1o sweep the image across a selectabie narrow siit at a rate
of 30"-100" s~ '. The detector was the Kytt Peak ~ TTT ™ InSb
photcmeter. cocled 10 liqund helivm temperatures. Each scan
consisted of 128 data potnts wnose anguiar sampling interval
was selected to give roughly 25°¢ oversamoiing compared with
the Nyquist rate. Table 1 summanzes the scan parameters at
K. L.and M.

In a typicai observauon sequence. 1000 scans of the object
would be macei ~ 130 s), followed by a simsiar number of scans
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on the sky and a reference object (BS 2305 a1 K and L, x CMa
at M. This was repeated up to 3 times. On-iine data reduction
enabled the quality of observations to be esumated. although
all the data presented here are the result of off-line data
reduction. The operation of the Kitt Peak Speckle Interferome-
ter. scanning secondary and on-line data analysis. is controlled
by a computer program written by D. Conners.

Data reduction consisted of computing an estimate of the
" power spectrum " (i.e.. the average squared modulus of the
discrete Fourier transiorm) of object. sky. and reference scans,
subtracting the sky power spectrum from those of the object
and reference, and finally dividing the corrected object power
spectrum by the corrected reference power spectrum to yield
an estimate of the power spectrum of the object intensity. This
resultant one-dimensional power spectrum is a section through
the origin of the two-dimensional power specirum at an angle
dependent on the scan direction. Figure 1 summarizes the data
obtained on the Red Rectangle. and gives some idea of the
random errors inherent in this observational technique.

Average object power spectra corresponding to the five sets
of observations are shown in Figure 2. Denoting the estimate
of the power spectrum of the sky-corrected object scans
by P, and that of the sky-corrected reference scans by
Py then Figure 2 shows averages of the form av [P N)]
av [P,(N]; the average of the curves shown in Figure 1. ie.
av [P} Py ], is a biased estimate of the object power spec-
trum when there is substantial variability in the data.

[t 1s impossible to determine a unique object profile from a
knowledge of the object power spectrum. We have fitted a
symmetric mode! of the object,

Oiry = F exp [ - <‘V:_’>-] +(l ~ Flexp {: - <#>‘} .
1 4

consisung of two Gaussian profiles, to the observed object
power spectra; the best-fit power spectra are shown in Figure
3a. There W, = 0”52, ¥, =071, and F = 0.58 for N-S scans,
while W, = 072, W, = 071, and F = 0.58 for E-W scans, where
the I¥, are L e radii. The object profiles along the N-S and E-W
axes are shown in Figure 3b: it must be stressed that while
these object pronies are consistent with the observed power
spectra data. they are only one possibie object distribution.

[n summary, the speckle measurements reveal the following:

1. The Red Rectangle 1s clearly resoived N-S and E-W. The

TABLE 1
SCAN PARAMETERS
K K
Parameter 1981 Dec 1982 May L M

Mean wavetength 4 tum . e 2 e 345 43
Dufraction-iimited angular frequency of

18 m aperture. f,,,, 1arcsec 'y 34 34 33 38
Sampling ntervai Jx arcsect 4.076* 0.047 2073 2.105
Samping ntervai 3z st 2.001 2.001 0.001 2.001
Max observaoie frequency 1n power spectrum.

Cmm = 1 2Azrarcsec” T 5.6 0.7 6.3 4
Samoing 1atesvai in power specirum.

=1 t28Azarcsec™) L 9.102 0.167 0.106 0.074
Sirt width iarcsecs:

N-§ 0.09 0.09 0.13 .

£-W 0.09 0.09 0.13 0.21

* The scan parameters were not optimized in the 1981 December observations. owing to a calibration

srror discovered Afterward.
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»nape of the power specirum indicates that the object intensity
-3 more concentrated toward the center than a single Gaussian
wouid predict. Fiting a double Gaussian modei for the object
to the observdtions indicates the presence ol a {possibly)
ceniro-symmetric concentratton of intensity of diameter 072
ane an 1svmmetric distrioution of intensity of diameter 074
E-W and 1"05 N-Sie.. the efongaiion is along the N-S axisl.

20 No stsizmatic L anaton Ol ine power spectra with wave-

length. i the range 2.2—3.8 um. was detectable. although our
probable errors in diameter estimates are ~ 20%,.

Polarimetric observations at K of the Red Rectangie were
obtained in 1980 October on the 2.1 m telescope using the Blue
Toad Rapid-Poi polarimeter. Observations on HD 44179, as
well as 8”0 north. south. east, and west of the star(s) were
obtained with a 10” beam and a beam separation of 80" N-S. In
additon, mutuaperture polarimetric observations at K were

.
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obtained in 1982 September with the same insttument. Instru-
mental poiarization was determined by observing several
unpotarized stars. and corrections for the instrumental polar-
ization have been applied to the data. The efficiency of the
system and the zero position angle correction were measured
by obtaining observauons of VI Cvgni No. 12 and Walker 67.
Photometric data are aiso extracted from the polarimetry. and
the resuits are presented graphically in Figure 4. The central
source is 0.3° polarnized at K. with a position angle of
437 = 2+ A previous poiarization measurement by Jones and
Dvck 11978) at K gave a polarization of 0.5% = 0.2%, and
their position angle (measured at J) was ¢ = 45° + 7°, While
nebulosity 8” from the central source is slightlv more polarized.
we do not find the Red Rectangle to be sumitar to typically
highiv polarized bipotar nebulae e.2.. AFGL 2688. NGC 2261.
anc $106.

{f. DISCUSSION

Previous IR photometry and spectrophotometry. as well as
the polarimetry reported here. of the central region around HD
44179 were obtained with observing apertures larger than the
largest dimension resolved here (1705). Russell. Soifer. and
Wiilner 11978, hereafter RSW), illustrate combined spectra
from 2 0 14 um, attribute the observed radiation to thermal
dust emussion. and point out that the emission is broader than
that from a single-temperature blackbody. as had been pre-
viously noted by Cohen et ul. (1975). For example. at 2 ~ 3 um,
the gray body color temperature is ~900-1000 K. while at
4~ 10um.itis ~ 3500 K. Since HD 44179 is apparentty bipolar
nearly in the plane of the sky. they conclude that the dust
emission detected from 2 to |4 um must be op:::aily tin. This
conclusion is substantiated by the observed presence of the
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unidentified emission features generally associated with opti-
cally thin dust emission nebulae.

RSW attriputed most of the near-IR emission to a reddened
central star, and by assuming a brightness temperature no
hugher than the 500 K color temperature derived for the nebu-
losity in their beam. deduced from the observed fux density a
diameter in excess of 0”1,

Our speckle measurements of the power spectrum can be
inonuniquely) modeted by a two Gaussian components. one
with | ¢ diameter 072 and another of total size 0”4 E-W by
1703 N.S. We find no systematic vanations of the power
spectra with wavelength. In fact. we cannot easily model the
wntensity associated with each component because we have no
@ priori knowledge of the geometry. What seems clear,
however, is the separation into a central component and an
clongated component. We presume that the “central ™ object
i1 ¢ diameter = 0"2) is identifiable with an extensive shell
around the startsy HD 44179 and that the extended emission

10”4 E-W by 1703 N-S) represents an axisymmetric distribution
of dust surreunding the central object. Both the lack of detect-
able free-free radio emission and the color temperature rule out
a free-free component. Although RSW considered only thermal
emission. there is a disunct possibility that the observed
infrared radiation associated ‘with the bipolar flow could be
due to dust scattering in the lobes north and south of the torus.
For example. many protoplanetary nebulae exhibit large
infrared polarizations in the bicone 1e.g.. NGC 2261. P, =
165 Jones and Dyck 1978). 1s do young objects like S106
1P, = 20°,, Lacasse er ui. 1981). The nebula OH 0739-14
(Allen er ai. 1980) has been spatially resoived into a late M star
and an IR reflection nebuia (Forrest et ai., in preparation), and
exhibits polarization P =.29",, (Kobayasht 1978). We now
consider the evidence for scattering versus thermai emission in
the Red Rectangle.

We have obtained polarimetry at K with 1 10" heam cen-
rered on the central obect. s well as positions ~° rom the




3

Ty g

No. 2. 1983
37.5 37.0 36.5 36.0
| 1 1 L
404 =
8.7
o>
as- r
504 7. 7.8
. 8 \3 3 N
55 (
6.3
0- x -
5 T - T a3

/TN sw
BEAM | —><—

FIG. 4—Polanmetry of the Red Rectangle at 2.2 um. The heavy soiid lines
are 1n the dicection of the polanization vector. and the lengths are proportional
10 the poianzation. The light lines indicate the uncertainty in polanzation
angie. The number above zach vector represents the K-magnitude at that
beam position.

center. ¢ast. west. north. and south. The polarimetry of the
central object twhich includes the two components spatially
resolved here) yields P = 0.3% and 8 = 45°: This result is in
agreement with the sarlier measurernents by Jones and Dyck
119781 at K as weli as their position angle at J. In addition. we
obtained muitiaperture polarimetry at K, ceantered on HD
44179. with apertures of 6"~20". and the polarizauon and posi-
tion angles were idantical within the errors. Although the
intensity level 87 away from HD 44179 is extremeiy low. we
find the pclarization level to be only ~1°%=2% north and
south of HD <3179. If the IR scattering is similar to the scat-
tering in the blue. conditions favorable for higher polarization
occur only along the bicone in the bipoiar nebula. Thus.
although we cannot discount the possibility of scattering in the
bipolar regions 8" from HD 44179, we cannot on the basis of
these observatioas prove it. either. However. since both com-
ponents spatially resolved by speckle interferometry. namely,
the elongated source of size 0°4 E-W by 1"05 N-S observed at
K. L. and M. as well as the 0”2 diameter central object. were
included tn the beam used for the polarimetric observations
centered on HD 44179, we show below that dust scattering
plays only a minor role in that observed emission. Our K band
polarimetry can be considered in conjunction with the obser-
vation at J by Jones and Dyck 1978), and the visual polar-
imetry obtained by G. V. Coyne, as reported in Cohen et al.
(1975). Coyne accounted for his observations with a three-
component model consisting of a small circumstellar electron-
scatiering component tapproximately neutral) with P = 0.97°,
and ¥ = 43°. an interstellar component. and a small Just-
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scattering component at ¢ = 8 along the iong axis of the
nebula. If Covne’s model is correct. the near-IR poiarization 1s
due predominantly to electron scattering from an asymmetric
distribution of circumstellar material. The puzzie about this
interpretation is the peculiar angle of this asymmetry as com-
pared with the N-S bipolar nebula and the inferred E-W torus.
Another interpretation is based on the polarimetry of Perkins
et al. (1981), which shows relatively higher poiarizauons aiong
the bicone, where enhanced densities in the dust distribution
are inferred. Since one axis of the bicone is approximateiy
perpendicular to 6 = 43°, an enhancement in dust densuy
along that axis close to the source might result in polarization
perpendicular to that axis as the dominant poiarization. In any
event the small magnitude of the polarization at K prectudes
substantia! right-angle scattering in a particular direction. For
example, if the emission from the observed 074 E-W by 1705
N-S component were due to right-angle scattering off dust in
small lobes 0752 north and south of the torus. the polarization
at K would be substantial and at a position angle of approx-
imatety 90° (see, e.g. Elsiisser and Staude 1978). Thus we
suggest that both the emission associated with the symmetnc
shell around HD 44179, and that associated with the bipolar
extended macerial are due to thermal dust emission. That con-
clusion is strengthened by the color temperatures observed by
RSW.

A dust grain situated 075 from the central starrs) will attain a
cooler temperature than a grain in the ciccumstellar shetl at 074
from the star. The grain temperature wiil vary with distance d
asd~%*if the [R grain emissivity is proportional to 2~ ‘. and as
d~%33 if the grain emissivity is proportional to 2> Thus the
grain iemperature at d = 0”3 will be 0.53 (0.39) times the grain
temperature at d = 0”1, corresponding to £~ ' (2 %) emissivity.
The range of color temperatures observed. nameiy, 5001000
K by RSW. fits this hypothesis well as long as the thermal dust
emission associated with the dipolar flow region is optically
thin.

Are dust temperatures of this magmitude realistic > Following
Cohen er af. {1975), we assume that the binary star components
are idenucal. of type AU III, with boiomertric luminosities of
~360 L. each. The observed bolometric fux (integrating the
IR spectrum and extrapoiaung o uameasured longer IR wave.
lengtas as in Conen er ai ° :

~3 <107 ergsem ™57 so that
the distance corresponding :o the bolometric iuminosity is
D ~ 280 pc. The IR opticai smission ratio is ~ 12, which sug-
gests 4, ~ 2.7 mag. and this is probably due to the small dust
torus normaily associated with bipolar nebulae. At a distance
of 280 pc. the observed spatial scales of 0”1 and 0”5 from the
staus) correspond to 4 x 10!* and 2 x 10'* ¢m. cespectively. {€
the grain emissivity ratio €p €, is 0.1 10.01), grain tem-
peratures of 1580 K (890 K are 2xpected at a distance 0”1 from
the starts) and 700 K (400 K at a distance 0”5 from the staris).
Hence dust temperatutes within the 500-1000 K range are
entirely reasonable.

V. CONCLUSION

Speckle interfaromatnc ooservations centered on HD 43{79
at K. L. and M reveal spaually resotved information on this
source. The data are .ompatble with a model consisting of a
central source of 1 e diameter 02 and extended emission 1705
N-S by 0”4 E-W. Polanmetry at K including both sources in
the beamn is inconsistent with scattering as the main source of
the observed emission in the infrared. We snow that thermal
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emission by dust is a plausible source of the observed emission.
Poiarimetric IR speckie observations would allow quantitative
estimates of the role plaved by scattering in the extended emis-
ston region. If the extended emission is associated with the
bipoiar lobes. as seems reasonable. then scattering is expected
to contribute partially to the emission. With the present data it
ts impossible to build a quantitative model of the source,
because of the unknown geometry and the lack of a complete
set of spaually resolved spectroscopic observations. An ellip-
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tical geometry te.g., Lefévre. Daniel, and Bergeat 1983) might
eventuaily prove useful. Subsequent IR speckle observations of
resolved structure close to the central star of 2 bipolar nebula
at other angles and waveiengths are planned.

J. C. Dainty acknowiedges the support of the National
Science Foundation (AST 7926461) and the Air Force Office of
Scientific Research (AFOSR-81-0003).
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A NOTE ON EISENSTEIN'S IRREDUCIBILITY CRITERION
FOR TWO-DIMENSIONAL SAMPLED OBJECTS

M. NIETO-VESPERINAS'

The Insutute of Opuics, The Unwersity of Rochester. Rochester, N'Y 14627, {SA

and

J.C. DAINTY
Blackett Laboratory, Imperial College. London SW” 2BZ. UK
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A proof of untqueness of phase retrieval for a ceriam class of obyects is given. based on Eisenstein’s wrreducibinty critenon.

Some consequences are discussed.

The umiqueness of phase recovery for two dimen-
sional positive sampled functions can be assessed
from the ireducibility of the so-called object poly-
nomial whose coefficients are sampied values of the

object [1—3]. {Up,t.m=0.1.2. ., M. n=0,1.2.
LV

M
Fizyipy= 1
- m=0)
where the {a,,, are real positive numbers.

It was recently proposed by Fiddy, Brames and
Dainty [4] that Eisenstein’s irreducibility criterion
[5] of one dimensional polynomuals can be applied
to two dimensional ones by writing (1) as a poly-
nomial in one of the variables z, with coefficients be-
ing polynomials in the other variable z,. namely:

-

(83

P
Appply ©

1.3

ns9

M
Az z5)= z Lzl
m=)

2)
‘where the coefficients are
i
fmlzy)= 2.?) App 23 3)
=

' On ieave from Insututo de Opuica. Serrano 121, 18006
Madnd. Spain.

D030-4018.85 $05.30 & Eisevier Science Publniers B 4

(North-Hotland Physics Publisning Division)

.

This generalisation is not evident and no proof was
given in ref. [4]. In this note we give a proof of this
proposition,

For the sake of clarity. we shall first quote the
Eisenstein irreducibility «riterion in its usuai form
(51.

Eisenstein’s Crirerion: Given a univariate poly-
nomial F{=)with intezer coefficiants, i there 2xists a
prime p in Z (Z being the ring of integers), suca vhat
(i) p does not divide the leading coefficient of F(z),
(u;) p divides all other coerficients of F(2) and (iii)
2~ does not divide the coefficient of the term in =0,
then F(z) is irreducible over the integers tand. by
Gauss' theorem [3]. over the ring Q of rationals).

To see the generalisation ptoposed in ref. (4]
with the above formulation of the criterion. we next
quote it in the torm given v van det Waerden (ret.
[6].p. 95).

Eisenstein’s Criterion /van Jer Waerden; Let G ae
an integrai domaip {6] Auwn denticy ziement
whach unique facrornsarion nolds. Lat

M
FAzi= 2 S
m =)

(4}

be a poivnomual with coetticients 7,0 :n G If there
2ISts 3 pNime element p n G uon thal o) pdoes

[
w
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not divide [y, (w if) p divides all other elements f,, . m
# M and (iii) g~ does not divide £, thea F(2) is irre-
ducible in the set of polynomials with ceefficients
over G, except for constant factors.

Let us observe that since Z (and G) are integral
domains. the first form of the criterion is a particulas
case of the second formulation. Moreover. from this
more general form of the criterion we infer the follow-
ing corollary of interest in our problem which consti-
tutes the formulation of the criterion given in ref.
{51:

Corollary: Consider the polynomial F(:1 ,2a)asa
polynomial in the main variable z, with coeificients
fm(z2) asin eqs. (2) and (3), the a,,, belonging 1o
the field C of complex numbers. If there exists a
prime factor piz, ) such that: (i) p(z,) does not divide
10 fiy(z5). (i) p(z4) divides any other £, (z,). m # M.
(iii) pz(zz) does not divide fp(2,), then F(z;, z5)is
irreducibie over the set Cfz4] or one dimensional po-
lynomials with coefficients in C, i.e. is irreducible in
the set Cfz;, z;) of two dimensional polynomials
with coetficients in C. apart from actors being poly-
nomials in 2,.

Proof: The set of poiynomials

N
fm(zg)= ’2) @23

with a,,, in the fieid Cis an integrai domain with the
identity element [. with unique factorization (see e.g,
ref. {3]. 2. 126): therefore this set sausries the r2quira.
ments for the three conditions of the criterion.

As quoted in ref. [4], the unly prime in C{z4f i
of the form z, + b, with b in C: this leads 10 the con-
figuration of fig. 1 of ref. {4] for an Eisenstein ob-
ject. However, if one is interested only in real func-
tions f(x. y) then the coefficients f,,,(z5) will be in
the integrai domain R[z,] of one dimensional poly-
nomials with real coetficients. Then a prime factor in
R[z,]. satisfving the three conditions of the criterion,
will be a polynomial with real coefficients. irreducible
inR[z,]. Also. the ireducibility of F(z,, z-1in the
set R{2;. z5] of two dimensional poivnomials with
reai coefficients is guaranteed aparr from facrors shat
are polynomials in = . This, so far not quoted for
Eisenstein's objects, 1s important since it accounts for
the possibility of repeatability of 1 support in the -
direction by discrete steps. and its subsequent ac.i-
tion. For inscance. if G, . 2515 2 polyromial which
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represents the --transform of an Eisensiein object.
then

Flzy.20)=(az3 +bzy + e)Glzy, 25)

aso represents an Eisenstein object and corresponds
to the sum of G(z,. z,) taken with weight ¢, shifted
along =, one step with weight b and shifted two steps
with weight a.

The example given by Bruck and Sodin [1] in
which a reference point is placed to one side of a one-
dimensionat array F(zy, 1) =8(24) + :’Zl"-’l" corre.
sponds to an Eisenstein object provided g(z, ) has ar
{east either a simple real coot (different from zero if
n ¥ Q)or a simple pair of compiex conjugate roots.
Also a two-dimensional array with a reference point:

Flzy,2)=Glzy. 24) +r:\”:';'f,

M N
G(z).z5) = 320 "Zi} Emp23l.
where M <M, will be an Eisenstein object providing
G(z),24) may be decomposed as Glzy,29) = A(25)
X B(zy.25), with 4(z4) a simple factor polynomial
with at [east either one simple real root (different
from zero if ' % 0) or a simple pair of complex con-
jugate roots. These are just a few instances of distribu-
tions satistying the conditions of the criterion. Of
course. any other czse among the many that can satis-
fy the three condi'ions quoted above will correspond
10 3 unique solution. apart. of course. from the poly-
aomial factor in 24,

This work was supported by grants from the US
Air Force of Scientific Research (AFOSR-81-0003)
and the UK Science and Engineering Research Coun-
&l (SG/C 18190).
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Several theorems are known ymmetry relstions bet h ic wave fields that propagate
either into the same half- -space > 0) or imo complemnury helf-spaces (t > 0 and 1 < 0) and that ere complex
conjugates of each other in some cros Iplane: = The derived up to now apply only
to wave fislds that do not i £ t) In the paper two of the main

theorems are generalized to @ wider dm of field/ 1t is found that h
of s wave field have quite different syrametry pemu under phase con)untlon The results are illustrated by
a discussion of the behsvior of plane waves, both b and ones, which undergo phase conjuga-
tion followed by transmission or by reflection.
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PEASE RECOVERY FOR TWO-DIMENSIONAL DIGITAL OBJECTS

BY POLYNOMIAL FACTORISATION®
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ABSTRACT

Phase retrieval for sampled, real, positive objects in two-dimensions
is studied from the point of view of factorisation of the z—-transfora.
This decomposition is considered over the field of integers for
noise—free autocorrelations of digital objects and the formulation
provides a means of calculating all possible objects with a given
autocorrelation. A brief discussion on the influence of noise is
carried out using some simple examples which show the existence of an

approximate factorisation over reals.

® A preliminary account of this work was presented at the 1984 Annual
Meseting of the Optical Society of America, San diego, CA.

¢¢ On leave from Inatituto de Optica, CSIC, Serrano 121, 28006 Madrid,
Spain.




JINTRODUCTION

It is knownl:2 that the phase retrieval problem for sampled data is
equivalent to that of obtaining the so~called object poiynomial which
represents the z-tranaform of the object samples (apn}, m = 0,1,2...M,

n=0,1,2...N:

M N
F(zy,23) = 2 E agn 212 z3" (1)
m=0 =0

by finding the factorisation of the so-called autocorrelation

polynomial :
2M 2N
Gzy.zp) = ) ) bgpy zy® zp0 (2)
=0 =0

(whose coefficients by, represent the data) in the form :

M N M N
Q(z3.29) = zM zN [ } } agn z1® zzn][ E E agrpr 210’ zzn']
=0 =0 m'=0 n'=0

= . zqM 2N P(zq,25) F(1/25.1/25) . 3

However, apart from procedures based on modifications of the
Gerchberg-Saxton uxouth-’. whose convergence are not yet well
understood, no other attempts of performing such factorisation have

been made, although recently scme ocomputational results for small

St s A———




arrays based on our analysis below have been reported4,

In a recent plpOr’ we proposed a test of uniqueness of the
factorisation in the absence of noise for digital objects, based on an
analysis of factorisation of polynomials over the ring of integeras 2,
which for real digital objects and poise-free autocorrelations was
shown® to be the necessary domain of faotorisation. Thus, the
coefficients ap, and by, of Eqs. (1) and (2) are assumed to be
non—-negative integers. In Ref. § it was pointed out also that the
scheme used for assessing uniqueness of the reconstruction could bde
extended to find the factors of Q(zy.,z;) and hence the solution(s) to
the phase problem. The purpose of this paper i3 to show how this is

done.

This noise—free factorisation is useful where other phase
reconstruction algorithms are tested for digital objects. In this case
the factorisation procedure proposed in this paper can give all

possible objects with integer sampling values.
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The procedure of factorizing a one dimensiomal polynomial ¥F(z) in Z
consists of factoring modulo p? VW, (p prime) by successive lifts of
factorisation starting modulo p. This method yields factorisation
aodulo an integer as large as one needs. (What follows is based on the

facts quoted in Ref. 5 .)

The following lemmas state how to lift the factorisations (see e.g.

Refs. 6, Ch.II.13 and 7):

Lepma 1 (Hensel): Let p be a prime and F(z) a monic polyncmial in
Z{z]. Let g1(z) and hy(2) be two monic relatively prime®* polyncmials
in zp[z] such that F(z) = gy(z) hy(z) (mod p). Then for any integer
k > 1 there exist polynomials gy(z) and by(z) in Zqfz] such that

F(z) = gu(z) hy(z) (mod q), where q = pX , g = gy (mod p) and

hy = by (med p).

Lesma 2 (Zassenhaus extension8): Let p, F(2), g;(2) and hy(z) be given
as in Lemma 1: for any integer k > 0 there are polynomials gk(z) and
by(z) 1in Zg[2] such that F(z) = g(z) hy(z) (mod q). where q = p2 XV

and gy = g1 (mod p) and hy = hy (mod p).

Based on these lemaas the procedure for factorizing over Z (or
equivalently, modulo ﬁVlargo- enough so that the coefficients of

F(z) and its factors are the same as those over 2) is as followa:

*¢ Footnote If q is a natural number and g and h polynomials in Z(z], g
and h are relatively prime modulo q if there exist polynomials r and s
in 2{s] such that rg + sh = 1 (mod q).

v e e c—— e e
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1) Pactorize the monic F(z) in Zp. the ring of integers modulo p
(p prime), by means of Berlekamp's method? into two relatively prime

factors g; and hy.

2) VWrite the difference F(z) - hy g3 where F(z) and the product of hy
and g; is taken over integers. Then reduce that difference modulo p2

obtaining a polynomial ki (z) in p by extracting p as a multiple.

3) Find two polyncmials Hy(z) and G1(z) such that

ky(z) = g3(z) Hy(z) + by(z) Gy(z) (mod p)., the degrees (deg) of Hy
and Gy being such that: deg G; < deg g; and deg H; < deg by.

4) Build the new factors (mod p2): g3 = gy + plGy and hy = by + plH;.

$) Iterate the procedure as many times as necessary until the

factorisation mod p2\¥ coincides with the factorisation over Z.

The details, with examples for the procedure to factorise a polynomial

F(2z) modulo pz‘Vcan be found in Section 13.B of Ref. 6.
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3.

Based on the above ideas, the factorisation of the autocorrelation
polynamial Q(zy.z3) into irreducible factors (whose number is expected
to be even) with integer coefficients, or, if it is of interest, the
factorisation of the object polynomial F(2;,z3), can be carried out by
means of algorithms that generalise univariate polynomial factorisation
to several variables., A suitable algorithm is that put forward by
ths’ , which is an improved version of another method previously

established by Wang and Rothsch11d10, The algorithw is as follows:
Let
P(21. 2z3) = Py(2z3) zyM + Pm-1(22) 'le—l + ...t Polzg) 4)

be the polynomial in z; whose coefficients Pp(zy) are:

N
Pafz2) = )  cap 2@ . (5
™1

(1) Extract the content’ of P(zy,z3) by obtaining the greatest common
divisor (ged) of the coefficients Py(z3). This will be a factor in 2p

of P(zy.%23).

(2) Obtain god{P(zy.22), 3P/321] = D(24,27)., which accounts for
multiple factors as in Fact 2 of Ref. 5. The algorithm can be carried

out by factoring D and P/D separately if D 4 1.,




(3) Pactorize the leading coefficient Py(z3) into irreducible factors

according to the procedure described in Section 2:
Py(z3) = P1(z3)...Fpl23) .

(4) Pind an integer zp such that: (i) Py(zg) # 0. (ii) For each
factar Fy of Py, 31 = Fy(2g) has at least one prime divisor P; which
does not divide any Fy. j < 1, or the content of P(z1,2qg) .

(111) P(zy.zg) has no repeated factors.

(5) Factorize over integers pp{P(zy,zg)] = Py(23)...Pn(2;), where

ppl 1 denotes the principal part®.
(6) Denote by Py;{1)(zy,z5) the polynomial obtained by substituting
the leading coefficient of Py(zy) by F;i(z3) such that, of course, this
leading coefficient is equal to F;y(zg). Then construct the function
Ry(21.22):

Ry(z1,23) = Py (). Ppp(1) - P(2q,29)
Note that Ry(21.zg) = 0.

Evaluate

aRy
Cy(zq) = —
3zy 23 = 2g

7) Find polynomials as(1)(zg), (1 =1,...r), such that




01(1"'3...?,- + cz(i)l’l.l’g..?r + 63(1)1’1?2?4...?,. +

vootapllVPyo Py . Ci(zy) .
such that deg(ay) < deg(Pg), (i =1,...r).
(8) Obtain new approximations to the factors:
Pyy(2) = py (1) - a,(1) (g5 - 2z¢) .
(9) Obtain a new Ry(z3.22):
Rp(z1,23) = Pyg(2) .. Ppp(2) - P(2q,29)
and evaluate: .

2Ry

- ———
.

azy

[T

Ca(zy) =
22 = 29
In general. after obtaining Pyp(®....P..(® in the mth iteration one

will evaluate:

R.(’l"z) = Pll""“"rr(n) - P(zl'zz)

Ra(zy.29) = 0

"Ry

1

Calzy) = o7 ;;—.
2

22" 2%




Then one will obtain polynomials a4{®) (zy) such that:
a1 (W py. .. .Pp + ag(®PyP3...Pp + a3{1)PyPyP,. . Py +....

+ 'r(.)Pl--°-Pr-1 =  Cp(z1) .

so that

pii(n+1) = Pii(m) - ag(@(zg - zg)® .

The following example illustrates the above, but of course the

procedure would be implemented on a computer for larger arrays.

Example 1

Let us find all possible objects, with integer sampling values,
compatible with the autocorrelation of Table 1. The greatest common
divisor of Q(zy,2z3) and 3Q(z;,23)/327 is found to be (see e.g. Ref. 7

for the calculation procedure):

2 |

P(z1.z3) = gcdlQ, 32y

= (9223 + 9222 + S5z9 + 1)214 + (3223 + 4222 + 229 + 1)213
+ (324 + 11233 + 25252 + 1125 + 3)zy2

+ (294 + 2233 + 4252 + 3z3)2y + (294 + 5293 + 9252 + 92y)

which is a double factor of Q(zg,2z5). In fact, a straightforward

calculation gives:

Q(z3,23) = P(z1,23)% .




TeoTe e .

P(zy,23) is found to have no multiple factors.
Let us apply Wang’'s algorithm to find the factors of P(zy.23). An
analysis based on the metbods of Ref. § shows that P(25,2Z3) has two

factors.

The leading coefficient 9z33 + 9252 + 525 + 1 is factored acoording to

Section 2 as:

F1(23) = 3z + 1

Fa(zg) = 3232 + 235 + 1 .

An integer satisfying the conditions of point (4) of Wang'’s algorithm

is z9g = 1. Then
P(z7.1) = 24294 + 10233 + 53292 + 1025 + 24,
which, using the procedure of Section 2, factors into:

Py(zy) = 42932 + 27 + 6 and  Py(zg) = 6232 + 253 + 4 .
Then:

Pll(l)(zl.zz) = (32 + 1)232 + 25 + 6

P23 (z4,23) = (3232 + 229 + 1)zy2 + 29 + 4 .
Ry(z3.29) is given by

Ry(21,23) = [(323 + 1232 + 25 + 61[(3232 + 225 + 1)292 + 24 + 4]

= P(zy,2y)

e R e ——— - e e -




- (-383’ - 833 + 3x3 ¢ 1)3;’ + (-383‘ - 11:33 - 1332
o 1859 + 813y3 + (~mg¢ ~ 253} - 4393 ~ 333 + 10)3y
+ (-534 - szyd - !lzz - 929 + 24)

and

Wy
C1(sy) = — = -85y3 - 46252 - 213y - 46 .

2 =1

Let us now find polyncmials az(l) = azy + b and ag(1)(zg) = ozq + ¢
satisfying:

asD(d4gg? + 3 + 6 + gDV a6s? + 21 + ) = -8zy3 - ¢62y
bd 21’1 - 46 »

which gives the limear system:
4a ¢+ (1.1 = =8
a+4b+ c+ 6d=-46
6o+ b+4dc+ da=-21
6d + 4d = ~46
m'uch.--zn b."- O-OMd-".
Thus: 31} (zy) = -22; - §. ag W (zy) = ~4

Then:

P;;‘z’(lx. 52) = Ptg“)(zg.lz) + 4(3g ~ 1) = (323 + 1243 + 51

448302
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!33(”(:1. s53) = Pzz(”(s;.sz) + (233 + 8)(3y - 1)
= (3333 ¢ 253 ¢ 1392 + (235 - 1)33 + (S35 - 1) .

The procedure is repested with Pyy(2)(sy,37) and P33(2)(35.34) until
the following factorisation is obtained:

Qlx3.23) = [P31(3)(zq.29)12 (P22¢3) (25.32)12

with
Pra®(a1.32) = (32411232 + 35 + (2y2422943)
sz(”(z;,zz) = (3:33+233+1?zlz + z32zy + (233*3:3) .

The two possible objects Py(35.39) = Py1(3)(2y.33) Pya(3)(2y.29) anmd

Fa(31.33) = [P13(3)(21.29)12 are shown in Tables 2a and 2b reapectively.

[T
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4. INFLUENCE OF NOISE

All of the above analysis is applicable to digital. poise-free
objects and thus will fail in the presence of noise. In fact, although
the noise-free autocorrelation polyncmial Q(2zy.23) is factorisable into
an even number of polynomials with integer coefficients, the noisy
autocorrelation will probably become reducible into factors with
irrational coefficients (the first decimals of these representing
approximations to the ideal noise-free integer coefficients), or even
reducidble over complex fields, in which case no possible real and

positive object distribution can be found.

The following example illustrates the above comments.This example does
not attempt to be an exhaustive analysis of the influence of noise on
the problem, since this paper is mainly concerned with the noise-free
situation. However, the example illustrates to some extent how noise

can affect the factorisation.

Example 2

The polynomial Q(2z3.z3) of Table 3a is found by the method of Section 3
to correspond to the object of Table 3b. This solution can be seen to

be unique by using the test of Ref. S.

The autocorrelation polynomial of Table 4a, whose coefficients a?e
perturbed values of Table 3a, no longer factorises into polynomial
z-transforms with integer coefficients, but into the product
F(zy,29) F(zq71,2571) 234 234, with F(z4,2) having irrational

coefficients. Table 4b shows the object with coefficients obtained by

ir




(2]

approximating these irrationmals by decimals. The coefficients of this

object are simply perturbations of those of Table 3b.

However, the situation can be much worse. Table 5a represents another
perturbation of the autocorrelation of Table 3a, and Table 5b shows the
corresponding complex object. In this case no real approximation to
the true ideal noise-free object of Table 3a can be found, and,
neglecting the phase, the modulus of this complex object represents a

poor approximation to the original object.

Even for a noisy autocorrelation Q(zj;,Z3), one expects a minimum of two
factors, (one flipped with respect to the other). However for

F(zy.2z3) perturbed by noise one would expect to lie in a‘region of
irreducibility even if the noise-free F is reducible over Z. This is
likely to be so since according to Ref.l11 the set of reducible

polynomials in two variables has measure zero.
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43
108
mn
162
) )

14

100
138
126

S4

56
226
546
792
702
261

4

Autocorrelation Function

156
326
464
368
144

36

TABLE.1

.

90
399
922

1321
922
399

90

36
144
368
464
326
156

40

54
261
702
792
546
226

36

54
12¢
138
100

14

162
m
108
43
10
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le

IADLE 2

Object (Fy) obtained from the autocorrelation of Tadle 2

1 1 3
] 2 11 3 9
» 4 25 4 9
9 3 11 2 5
3 1 1
1
TABLE_2b ,

Object (F3) obtained from autocorrelation of Table 2

ot
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IABLR 3

a

Noise-free autocorrelation

23
118 30 118
126 118 352 118 126
118 $0 115
25

IaBLE.2D

Corresponding object

\)
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IABLE. 42

Noisy autocorrelation

s 1 1
19 57 123 4 3
12¢ 119 352 119 124

S 4 123 57 119

TARLE 4D

Corresponding object approximated by decimals

5.38 0.12 0.2
13.86 5.17 8.84

0.11 S.1¢




TABLE_S»

Noisy autocorrelation

20

100 40 100
130 120 340 120 130
100 40 100

20

TABLE 5P

Corresponding object

JT - YT

VR "V‘O J4 ﬁ*zﬁ‘o
Ji Y
Ebaze:
n/4

0.388 o 0.588

n/4

T s mare

/9
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A STUDY ON THE PERFORMANCE OF NON-LINEAR LEAST-SQUARE

OPTIMIZATION METHODS IN THE PROBLEM OF PHASE RETRIEVAL

*
M. Nieto-Vesperinas
Department of Physics and Astronomy
and
The Institute of Optics

University of Rochester
Rochester, NY 14627, USA

ABSTRACT

The efficiency of an important class of Newton methods (the Levenberg-
Marquardt algorithm) for solving overdetermined sets of non-linear equations
is tested in finding the solution to the 2-D phase problem. It is seen that
the non-linearity and number of local minima of the cost function increases
dramatically with the size of the object array, making these methods of

little practical use for sizes greater than 6 x 6.
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1. Introduction

There is much current effort in obtaining algorithms to retrieve the
phase from knowledge of the modulus of the Fourier trangform of a 2-D real
and positive sampled object functionl-3. Although this problem has no unique
solution in 1-D, it is now understood tﬁa: in the majority of 2~D cases the

solution is likely to be unique“'7.

Let a(x,y) be the 2~D object sampled function to be found:

" M
Q (*%y4)= Z i 4..,:(::-1-0) yty-nb) (4)
Wy nx 4
(A being the sampling interval; for the sake of simplicity the number of
samples and the interval between samples are considered equal in the x and

y directions).

The phase problem in object space then consists of finding a(x,y) from
knowledge of its autocorrelation function @Q(x,y) by solving the non-linear

integral equation:

Qexy)= || dgdrad marsax, zey) (2)
P
D being the object support.

Taking into account the discrete character (1) of a(x,y) , this amounts

to solving the overdetermined system of non-linear equations:
M M
Q'.__‘, ""Z Z A m a'm\si.,naj (3)
mz4 n:=4 . J

Q1j being the samples of Q(x,y)




In spite of the progress made in computer simulations with the algorithms
used so far, no reconstruction procedure seems yet to have been systematically
successful except for small arrays or when the gstarting guess introduced
in the iteration process is close to the true solution. Otherwise the itera-
tions tend to stagnate and get stuck in the so-called local minimum of the
cost function. Also, the convergence criteria of these algorithms are
generally not well understood.

On» the other hand, there is now available a wide and complete study of
optimizatfon-methods for solving systems of non-linear equations based on
gradient search. Among these, an important and well established class includes

8’9. Their convergence has been exten-

Newton and conjugate gradient methods
sively analyzed and is known to be quadratic. It 1is therefore of interest
to study the performance of these methods in the problem of phase retrieval,
namely in obtaining the solution to Eq. (3). If F(x) 1is the cost function
associated with this system of non-linear equations and it is given by the
norm of the residuals of (3)?, gradient methods operate by searching the

(k+1),

line P at which F(x in the (k+1)th {teration satisfies:

W () (
F(x)= F(x™ep) ¢ F(x™) (4)
Hence, these procedures lead directly to a minimum of the cogt function

F(x) .

An important class of line search methods is the steepest descent.

Fienupz has shown the equivalence of this method and his error-reduction
algorithm. However, steepest descent methods seem to be inefficient and b

unreliable in practice to find mininas’gz they are very sensitive to scaling

and round-off errors and hence, although their convergence can be theoretically

W




proven to be linear, it is in practice either very slow or non-existent as
the successive iterations become unstable and end far from a minimum,

Newton and conjugate gradient methods provide, on the other hand, very
robust and stable codes of implementation. Their main disadvantage, however,
is that the computing time may become long as they require to produce and
invert an H2 x Hz matrix for an M x M object. These operations can be
made stable, though, and their time be substantially reduced with the aid
of an array processor. Also their quadratic convergence requires only a
few iterations, and no inclusion of noisy autocorrelation data is required
at each iteration as in refs. 1 and 2.

In this work we have tested a least-square (L-S) optimization; more

10,11

specifically, the Levenberg-Marquardt (L~M) modification of Gauss-

Newton methods‘g.

This is an appropriate procedure for an overdetermined
set of non-linear equations such as (3): For an object array with M2
unknown elements, there are M2 + (M- 1)2 equations. This fact may also
account for the uniqueness of the solution in 2-D. Earlier attempts for
1-D phase problems by using the Newton-Raphson method (which is established
for a set with the same number of equations and unknowns) have been done
in Refs. 12 and 13. In the 1-D case, however, because the number of equa-
tions and unknowns is the same and the equations are non-linear, the solution
is not unique.

As we shall show in this work, although the stability and convergence
of existing L-S codes is very good, the structure of the problem increases
dramatically in complication as the size of the array increases. The cost

function becomes highly non-linear with a huge number of local minima, both

far and near the global zero minimum that constitutes the solution to the




prodlem. Thus, although these gradient methods are well ‘established and pro-
vide good convergence, they always yield local minims and fa1l to reach the
solution to the problem (except for M < 6). At the same time they give,

however, an account of its complexity.

H
H
¢




6
2. Description of the numerical method
Given the system of non-linear equations:
(.‘x4' X):"
] Vi PRt | a4
RSN (5)

J
with N data 81""’3N and M unknowns xl,...,xH (N >M), the non-linear

L~S method for solving (5) consists of seeking the global minimum of the

cost function:
. N,
FiXg,- ) x)=sd 5 o
1 Xm) 2 24 J (¢)

vwhere the residuals r, are:

3
G2 )= g 7

We shall use the vector notation:

Xz (X4, v, Xp)

7
RO=(rte), oo, 1 ixy) (e

So (6) may be written as:
F(x)= £ RT(x)R x) ' ()
the superscript T denoting 'transposed'.
The {terative procedure that yields a minimum of F(x) iss’9
x(kM): 5(k)"-yck) (10)

(le)
where the increment vector é[ is obtained by solving the linear system

, k
[v;F()Elu])‘Xé‘( ):-V_F()_“'k)) , (41)




P

B ¥ vy

7
v2-?(!(k)) is the Hessian matrix of F evaluated in the kth-iteration
E(k) 3 its elements are: N
2F |
P
(orraxtny) = == 1 (42)
v ?X;?X} I (M)

X=X

It is straightforward to see from Eq. (6) that:

A 1 terwm with second order
V_IF(E(“)) = z (5(“)) Z (!Uﬂ )+ ( o\e:’sv:{:hres of v ) (43)

(k))

where gT(i is the transposed of the Jacobian 1(_:5“‘)) of Eq. (5), whose

elements are:
AR
(&) = 12X
[ T ix ﬂ Y o) X;

(i) (14)

x=x

(k)

On the other hand, V_F(x ') is obtained from Eq. (6) to be:

7F (x)= TT(x") R (x*%) (15)

By inserting Eqs. (11) - (15) into Eq. (10) and approximating the Hessian

by the first term of Eq. (13) one obtains the algorithmic scheme:

-4
xtkn); 5‘“’—[1’7(5‘”)3(%“‘))1 ;1(5“")5(5“”) (1¢)

The iterative procedure corresponding to Eq. (16) is the Gauss-Newton method.
In order that the fixed point 5* of the sequence (16) when k* ®

be a minimum of F(x) the Hessian (13) should be positive definite.
Sometimes the neglect of the terms of (13) from the second onwards pre-~
vents this property of the Hessian and is convenient fo add a multiple of

the identity matrix. The result is the L-M algorithm:

-



(k1)

-4 4

There are several codes for finding the optimum Fk . An efficient
one for adequate line search is due to Moréla.

For the system (3) the vector x has the M2 components &, n . Then
'__I_T(l(k))i(l(k)) + ppl 1s an w2 x Mz matrix.

A very efficient implementation code of (17) that controls numerical
instabilities due to round-off errors that appear in (17) for M large
(we have observed them for M > 5 ), is the one contained in MIN?ACKIS.
The subroutine LMSTR contained there seems appropriate since it uses minimum

storage. It is the one we have used to implement (17).

Since the autocorrelation array:

e (%)

is even around the central sampling point QM M the necessary number of
’

2 2
data Qij is M + (M~ 1)° , namely QM,H""’QH,ZM-I’QM+1,1""’0M+l,2M-l"'”

Um-1,17" U1, 21"
For the sake of clarity, the technique used for establishing the set

of non-linear equations and to find the Jacobian will be illustrated with a
2 x 2 array. Numerical results for larger arrays will be showm i{n the
next section.

For example, the 2 x 2 array

a a

11 12

a (19)

21 22




AT e .m'f'lu'.-_ -

has the autocorrelation

- - e . =

(20)

Since Q11 = Q13, le = Q32, Q13 - Q31 and 021 - Q23 , we have to consider

as data the five elements sz, 023. 031,

equations would be in this case
2

+az + a

2 2
=a 12 %3 Y

Q2 "3
Q3 = 31212 * 32122
Q31 = 2123y

Q32 = 311321 * 2123
Q33 = 213397 »

which has 22 unknowns and 5 equations.

Q;, and Q45 -

The set (3) of

(21)

In general, the set (3) may be formed hy the following matrix procedure:

- M-4 times M) Limes
Au A 0.0 &g A0 0 Ay y " -y y qra" i
oa M=t times Bl timeg ! :
" a,,ma.,no---ow---al,m. Arn 0:- 0 &y 4 Opyet, 4-) ad 1)
)
boay, .. . . .. .. - .. C Ry, Ml 3)n-l
0
. - - - e e e e e e e e e e 42
- e e o ..o - . Aoy
9'4!
000 - - - - - - . ) ’) :
5 0 an [l 2
" Lo
‘_&NHJ

-y

[ @

Quy, e

Qp",m-t
Quay (22)

[_Q";-l JAN -

For example, for the 2 x 2 array (19), Eqs. (21) are expressed according

to (22) as:

Ay Ay, O Azy) a3
0 ay a2 0 ay Az
o 0 Aan 2 ¢ 0
0 ©° o ay aj, a2
0 0 o [o] Ay

Ay

R — ]

du,J

| Qu Y
Qa3
Q3

Q32

\

€33

(23)

- ———

v

~
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From Eq. (22) the Jacobian (14) is now easgy to evaluate. For example:
- -
Ay ’
" ‘
\ g &M
ALl =[1000-..0] 1%
" ! :)n-' ’
i 0
| &2,
[
’ ﬁszn
|1 M-t r
o) (]
b X8
[ o 0
-1 M- {14)
+ [“‘“a'z"“lm 0 0andyz gy Q- 0 Apy-avg :
! iy 0
and so on. :
o |
For example, in the expression (23) L
a“‘] ’ \}
2 0
' \2
3',,‘«’,3-—‘:[10000‘) 0 ; +[a-n4\zoa-u&zz] o (25)
i ! 0
“zzJ 1%
and so on. In this way one obtains easily for the Jacobian of (23):
Ay 2ayv: TAa21 lag
T = @iz ay 2312 4z (26)
= 0 a 21 &)7_ v}
a2y a1 an Az
A2 [v) 0 a1l

The recursive procedure given by Eqs. (22) and (24) and illustrated for a
2 x 2 array in Eqs. (23) and (25), can be straightforwardly programmed in a

computer. For an M x M object array, the product i?; contained in Eq.

(17) is an MZ x Mz matrix. This product and the subsequent inversion

procedure can cause instability of the algorithm due to cound-off errors for




L

11

M larger than a certain value (we have experienced thisvfor M>35 ina
VAX-11/750). However, Moré's et al. subroutine LMSTR and other subroutines
of MINPACK in ref. 15 control this and complete convergence is obtained.

In the following section we describe our results with this subroutine to

vhich we provide the system of non-linear equations and the Jacobian as

described in Eqs. (22) and (24).

e e e —
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3. Numerical results

The performance of the L-M algorithm by using the LMSTR subroutine of
ref. 15 is discussed here.

Tables 1 show two objects 5 x 5. Table la shows an object array with
random elements, whereas Table 1b shows an object with a certain ordered
structure. The recongtruction of these two objects by solving the system
of non-linear equations (22)—41 equations and 25 unknowns~—from the auto-
correlation data without noise, is accurate 100% and perfect convergence is
obtained in ;bout 15 {terations. The time per iteration in a VAX 11/750
was about 2 sec. Apart from the correct solutioms, trial and error with

tn eacls case
different random starts also provided{about another ten local minimum solutions
completely different from these correct reconstructions. No positivity
constraints were used, since no advantage was found in imposing them. 1In
fact, the inclusion of positivity conditions introduces a non-linear constraint
such that the convergence process becomes difficult to understand and in
fact, 1t was observed to increase the number of local solutions.

For these small arrays the stability of the reconstruction versus the
noise introduced in the autocorrelation data was found to be robust. Table 2
shows the autocorrelation of the object of Table la. Table 3a shows the
reconstruction of the object of Table la by adding to the autocorrelation
data of Table 2 a noise uniformly distributed with values between -5 and +5.
Table 3b shows the reconstruction of the same object when the noise is uni-
formly distributed with values between -50 and +50. For a noise with values
between =500 and +500 the reconstruction becomes poorer. Results for other

5 x 5 arrays are similar.




The number of local minimum solutions increases dramatically with the
size of the array. Since L-S operates following the scheme of Eq. (4), the
minimum of F which is closer to the starting guess is going to be encountered.
This is illustrated with the 11 x 11 array of Table 4. For this size it
took about six minutes per iteration and perfect convergence (in the sense
that the successive iterations were exactly equal) was obtained in about
seven iterations; from noiseless data, however, many trials with different
starting guesses always gave local minima of F . If (5 1is the value
of the square rcot of F , and for the starting guess it was of the order of
106, all local minima were found at G =~ 105 and, of course, these
reconstructions were very far from the correct one. The autocorrelation
arrays of these local minima were all similar to the correct one near the
center but very different towards the borders. A Monte Carlo procedure
allowed us to obtain a start as close to the correct solutiom as (& = 29,
however the L-M algorithm got stuck in this start showing that it was already
a local solution. In fact, in order to get an idea of how many local minima
were existent also in regions of lower C} and even2::g correct solution
for which Cﬁ = 0, a starting guess equal to the correct solution perturbed
by noise uniformly distributed between O and 1 was introduced in the L-M
algorithm. After four or five iterations the algorithm got stuck without
having substantially approached the correct solution. This suggests the
existence of a "swarm”" of local minima very close to the absolute minimum
of F . 1In practice, if this region of F 1s reached, it will be very diffi-
cult to distinguish between these local solutions and also from the ideal
noiseless correct reconstruction; of course the existence of noise in the auto-
correlation data will always lead to these local minima 1f such low regions

of Cb are found.

R .
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4. Conclusions

We have tested the performance of an important class of Newton methods--
specifically the Levenberg-Marquardt modification of the Gauss-Newton algo-
righm for non-linear least square optimization--in the problem of phase
retrieval for 2-D array objects.

Since this method leads directly to a minimum of the cost function and
also is numerically stable and quadratically convergent, 1t‘provides, on
the other hand, a good test of the complexity in the number of the local
minima solutions. For small arrays the algorithm always worked, since a
small number of local solutions was found. However, the algorithm showed
a dramatic increase of the number of these local minima with the size of
the array, showing the existence of swarms of local minima, both far and close
to the correct global minimum solution.

Therefore, although much consideration has been paid to the ambiguity
of the phase reconstruction problem, i.e. to the number of global minima of
the cost function, and it has been shown that in 2-D there is likely to exist
just one global minimum which constitutes the correct solution, the real
practical problem that one has to overcaoame to establish an efficient algorithm
to reconstruct an object from its autocorrelation data (or what {s equivalent,
to reconstruct the phase from the modulus of its spectrum) is that of developing
a strategy to avoid the huge number of local minima of the cost functiom.

This number seems to increase as one approximates the global minimum, and the
practical uniqueness problem in 2-D is going to be the distinction between
these and the correct solution. This distinction is going to be hard to make
in the presence of noise in the data. A decomposition of the problem in

small arrays would be obviously desirable, however we have been unable to

«
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find a de~coupling of the unknowns in the set of non-linear equations that
would make such decomposition possible.

Finally, it should be mentioned that by the time this work is finished
a very interesting pa.;:»er16 has appeared presenting a successful reconstruction
of a 32x32 object array from the zero location of the analytic continuation
of 1-D strips of the object spectrum in the absence of \noise. Its efficiency
for real noisy data is under current investigation by those authors. It
is worthwhile to remark, however, that the performance of the optimization
method used in this paper should be investigated for 1-D strips of the
object which would invelve only M unknowns at each time. The number of
locel minima of the corresponding cost function will be much lower than
in the case treated here. However a procedure similar to that of Ref.l6
tha‘é eliminates the possible ambiguities by crossing strips in object space

has yet to be found.
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TABLES
LL 1 3 7 18 9
7 1 35 12 2
20 10 1 9 6 ;
: 18 K} 7 15 20
6 40 1 20 25
j Table la: An object with random values. The reconstruction from )
! noiseless data i{s exactly coincident with this object.
3
50 50 50 50 50 )
50 0 0 0 50
50 0 50 0 $0
50 ) 0 0 50 )
50 0 - 50 0 S0
Iasble 1b: An object with an orderer structure. The reconstruction 3
from noiseless data coincides with this object. ;
' s
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25 9s
195 240
646 802
894 1722
653 2381
3 1633
252 1022 ,
174 755
54 468
Table 2:

236
1094
1079
1434
2129
2205
1717
1439

m

633
1798
2228
2835
3051
2411
1675
1990
496

718
1017
1746
388
7126
3881
1746
1017
718

496
1990
1675
2411
3051
2835
222¢
1798

633

771
1439
1717
2205
2129
1434
1079
1094

236

Autocorrelation of the object of Table la,

468
755
1022
1633
2381
1722
802
240
95

54
174
252
331
653
894
646
195

25

18
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1.009
7.022
19.997
18.019

5.996

correlation data plus a noise with values in the interval

3.010
1.004
9.999
31.010

39.984

(-5, +5).
1.085 3.101
7.227 1.042

19.968 9.996
18.197 31.102
5.966 39.832

correlation data plus a noise with values in the interval

(~50, +50).

7.003
35.005
1.002
6.999

0.945

7.032
35.048
1.021
6.987

0.955

18,003
12.004

8.993
15.000

19.978

18.033
12.038

8.925
15.012

19.776

92.019
1.996
6.003
20.005

24.998

Table 3a: Reconstructior of the object of Table la from the auto~-

9.198
1.964
6.031
20.052

24.983

Table 3b: Reconstruction of the object of Table la from the auto-

19



3
68

49

25

12

14

74

14

27

17

12

31

13

42

19

M

67

12

23

45

23

13

14

23

33 16 23

12

12 14

26

12 57 78 32

14

16

11

49
15

93 23

67

16

10

98

79 - 12

34

16

49

44

2

23

56

%

31 95

17

s1

a3

Iabls &: An 11 x 11 cbfect array.
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